scholarly journals Electronic and excitonic properties of two-dimensional and bulk InN crystals

RSC Advances ◽  
2017 ◽  
Vol 7 (67) ◽  
pp. 42455-42461 ◽  
Author(s):  
Dan Liang ◽  
Ruge Quhe ◽  
Yingjie Chen ◽  
Liyuan Wu ◽  
Qian Wang ◽  
...  

Motivated by potential extensive applications in nanoelectronics devices, we calculate structural and optoelectronic properties of two-dimensional InN as well as its three-dimensional counterparts by using density functional theory.

2016 ◽  
Vol 18 (32) ◽  
pp. 22122-22128 ◽  
Author(s):  
Fernando Buendía ◽  
Jorge A. Vargas ◽  
Marcela R. Beltrán ◽  
Jack B. A. Davis ◽  
Roy L. Johnston

The combined use of a genetic algorithm and Density Functional Theory (DFT) calculations allows us to explore the potential energy surface. Our results show interesting effects on the geometries of the clusters on deposition. Two-dimensional clusters in the gas phase become three-dimensional and vice versa.


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Melanie Walker ◽  
Kelvin Jones ◽  
DaiQuan Noble ◽  
Marquavias Walker ◽  
Douglas L. Strout

Boron nitride is a material similar to carbon in its ability to adopt numerous molecular forms, including two-dimensional sheets and three-dimensional cages and nanotubes. Boron nitride single molecules, such as B12N12, have isomeric forms that include rings and sheets, as well as cage forms analogous and isoelectronic to the carbon fullerenes. Such cages tend to be composed of squares and hexagons to allow perfect alternation of boron and nitrogen atoms, which is possible because of the 1 : 1 ratio of boron-to-nitrogen atoms. What about molecules in which this 1 : 1 ratio does not apply? In the current study, theoretical calculations are carried out on molecules of B10N14 to determine energetically favorable isomers. Density functional theory is used in conjunction with Dunning basis sets. Cage, sheet, and ring isomers are considered. Energetic trends are calculated and discussed, in comparison to comparable studies on B12N12.


2019 ◽  
Vol 21 (11) ◽  
pp. 5916-5924 ◽  
Author(s):  
Yan Chen ◽  
Xiangbiao Liao ◽  
Xiaoyang Shi ◽  
Hang Xiao ◽  
Yilun Liu ◽  
...  

The mechanical behaviors of a series of two-dimensional (2-D) crystals X3M2 (X = S, Se; M = N, P, As) are explored through density functional theory (DFT) calculations.


Author(s):  
Dimitrios Kaltsas ◽  
Panagiotis Pappas ◽  
Leonidas Tsetseris

Topotactic transformations of suitable layered three-dimensional precursors are among the most robust methods to prepare two-dimensional (2D) materials based on silicon or germanium. Here we use Density Functional Theory calculations...


RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8654-8663
Author(s):  
Fatima Zahra Ramadan ◽  
Flaviano José dos Santos ◽  
Lalla Btissam Drissi ◽  
Samir Lounis

Based on density functional theory combined with low-energy models, we explore the magnetic properties of a hybrid atomic-thick two-dimensional (2D) material made of germanene doped with fluorine atoms in a half-fluorinated configuration (Ge2F).


Sign in / Sign up

Export Citation Format

Share Document