scholarly journals Hydrodeoxygenation of guaiacol over orthorhombic molybdenum carbide: a DFT and microkinetic study

Author(s):  
Kushagra Agrawal ◽  
Alberto Roldan ◽  
Nanda Kishore ◽  
Andrew J Logsdail

The hydrodeoxygenation of guaiacol is modelled over a (100) β-Mo2C surface using density functional theory and microkinetic simulations. The thermochemistry of the process shows that the demethoxylation of the guaiacol,...

2021 ◽  
Author(s):  
Kushagra Agrawal ◽  
Alberto Roldan ◽  
Nanda Kishore ◽  
Andrew J Logsdail

The hydrodeoxygenation of guaiacol is modelled over a (100) β-Mo2C surface using density functional theory and microkinetic simulations. The thermochemistry of the process shows that the demethoxylation of the guaiacol, to form phenol, will be the initial steps, with a reaction energy of 29 kJ/mol (i.e. endothermic) and a highest activation barrier of 112 kJ/mol. Subsequently, the dehydroxylation of the phenol, which has a rate-determining activation barrier of 145 kJ/mol, will lead to the formation of benzene, with an overall reaction energy for conversion from guaiacol of -91 kJ/mol (i.e. exothermic).


2020 ◽  
Vol 10 (9) ◽  
pp. 3029-3046
Author(s):  
Fan Wang ◽  
Teng Li ◽  
Yun Shi ◽  
Haijun Jiao

The surface and metal-dependent morphologies and energies of molybdenum carbide supported metal catalysts (Mn/MoxC; M = Co, Ni, Cu, Pd, Pt) have been systematically investigated on the basis of periodic density functional theory computations.


2019 ◽  
Vol 21 (44) ◽  
pp. 24478-24488 ◽  
Author(s):  
Martin Gleditzsch ◽  
Marc Jäger ◽  
Lukáš F. Pašteka ◽  
Armin Shayeghi ◽  
Rolf Schäfer

In depth analysis of doping effects on the geometric and electronic structure of tin clusters via electric beam deflection, numerical trajectory simulations and density functional theory.


2000 ◽  
Vol 98 (20) ◽  
pp. 1639-1658 ◽  
Author(s):  
Yuan He, Jurgen Grafenstein, Elfi Kraka,

Sign in / Sign up

Export Citation Format

Share Document