supported metal catalysts
Recently Published Documents


TOTAL DOCUMENTS

662
(FIVE YEARS 107)

H-INDEX

64
(FIVE YEARS 7)

Fuel ◽  
2022 ◽  
Vol 314 ◽  
pp. 123099
Author(s):  
Yuwanda Injongkol ◽  
Pongtanawat Khemthong ◽  
Nuttapon Yodsin ◽  
Yutthana Wongnongwa ◽  
Narongrit Sosa ◽  
...  

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Laura Antonella Aronica ◽  
Gianluigi Albano

Nitrogen-containing heterocycles are important scaffolds for a large number of compounds with biological, pharmaceutical, industrial and optoelectronic applications. A wide range of different methodologies for the preparation of N-heterocycles are based on metal-catalyzed cyclization of suitable substrates. Due to the growing interest in Green Chemistry criteria over the past two decades, the use of supported metal catalysts in the preparation of N-heterocycles has become a central topic in Organic Chemistry. Here we will give a critical overview of all the solid supported metal catalysts applied in the synthesis of N-heterocycles, following a systematic approach as a function of the type of support: (i) metal catalysts supported on inorganic matrices; (ii) metal catalysts supported on organic matrices; (iii) metal catalysts supported on hybrid inorganic-organic matrices. In particular, we will try to emphasize the effective heterogeneity and recyclability of the described metal catalysts, specifying which studies were carried out in order to evaluate these aspects.


Author(s):  
Xiaolong Wang ◽  
Dong Fan ◽  
Guojun Lan ◽  
Zaizhe Cheng ◽  
Xiucheng Sun ◽  
...  

It is critical to identify the reaction mechanism of carbon supported metal catalysts for the exploration of high-performance catalyst in acetylene hydrochlorination. Herein, we reported a systematically study on the...


2021 ◽  
Vol 15 (2) ◽  
pp. 141
Author(s):  
Muhammad Safaat ◽  
Indri Badria Adilina ◽  
Silvester Tursiloadi

Catalytic hydroisomerization of n-paraffin aims to produce branched paraffin isomers and suppress cracking reactions in the production of the low cloud point of biodiesel. The development of the type of metal and catalyst support, amount of metal loading, and reaction conditions are important to increase the catalyst activity. A high performace catalyst for hydroisomerization bears bifunctional characteristics with a high level of hydrogenation active sites and low acidity, maximizing the progress of hydroisomerization compared to the competitive cracking reaction. In addition, a catalyst support with smaller pore size can hinder large molecular structure isoparaffins to react on the acid site in the pore thus providing good selectivity for converting n-paraffin. Catalysts loaded with noble metals (Pt or Pd) showed significantly higher selectivity for hydroisomerization than non-noble transition metals such as Ni, Co, Mo and W. The reaction temperature and contact time are also important parameters in hydroisomerization of long chain paraffin, because long contact times and high temperatures tend to produce undesired byproducts of cracking. This review reports several examples of supported metal catalyst used in the hydroisomerization of long chain hydrocarbon n-paraffins under optimized reaction conditions, providing the best isomerization selectivity results with the lowest amount of byproducts. The role of various metals and their supports will be explained mainly for bifunctional catalysts.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Alexandra Lytkina-Payen ◽  
Natalya Tabachkova ◽  
Andrey Yaroslavtsev

Methanol steam reforming (MSR) is considered an effective method for hydrogen storage and to generate high-quality hydrogen for fuel cells. In this work, a comprehensive investigation of the methanol steam reforming process using a bimetallic Pt–Rh and Cu–Ni based on different oxide supports is presented. Highly dispersed titania and zirconia doped with indium and niobium ions were synthesized by sol–gel method. The effect of the nature and quantity of the dopant cation (In, Nb) on the catalytic performance of titania supported metal catalysts was investigated. The conclusions obtained show a significant effect of both the metal alloy and the oxide support nature on the activity and selectivity of the methanol steam reforming process. Pt–Rh alloy catalyst shows higher hydrogen yield, but its selectivity in the MSR process is lower than for the catalysts containing the Cu0.8-Ni0.2 alloy. Heterovalent indium doping of titania leads to the catalytic activity increase. It was suggested that this is due to the defects formation in the oxygen TiO2 sublattice. On the contrary, the use of niobium oxide as a dopant decreases the catalyst activity in the methanol steam reforming process but leads to the selectivity increase in the studied process.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liwen Xing ◽  
Yujuan Jin ◽  
Yunxuan Weng ◽  
Yongjun Ji

Numerous efforts have been devoted to investigating the catalytic events and disclosing the catalytic nature of the metal-carbon interaction interface. Nevertheless, the local deconstruction of catalytically active metal-carbon interface was still missing. Herein, the selected four types of landmark catalytic paradigms were highlighted, which was expected to clarify their essence and thus simplify the catalytic scenarios of the metal-carbon interface—carbon-supported metal nanoparticles, carbon-confined single-atom sites, chainmail catalysis, and the Mott-Schottky effect. The potential challenges and new opportunities were also proposed in the field. This perspective is believed to give an in-depth understanding of the catalytic nature of the metal-carbon interaction interface and in turn provide rational guidance to the delicate design of novel high-performance carbon-supported metal catalysts.


Fuel ◽  
2021 ◽  
Vol 306 ◽  
pp. 121588
Author(s):  
Richa Chaudhary ◽  
Paresh L. Dhepe

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jian Zhang ◽  
Dezhi Zhu ◽  
Jianfeng Yan ◽  
Chang-An Wang

AbstractSupported metal catalysts play a crucial role in the modern industry. Constructing strong metal-support interactions (SMSI) is an effective means of regulating the interfacial properties of noble metal-based supported catalysts. Here, we propose a new strategy of ultrafast laser-induced SMSI that can be constructed on a CeO2-supported Pt system by confining electric field in localized interface. The nanoconfined field essentially boosts the formation of surface defects and metastable CeOx migration. The SMSI is evidenced by covering Pt nanoparticles with the CeOx thin overlayer and suppression of CO adsorption. The overlayer is permeable to the reactant molecules. Owing to the SMSI, the resulting Pt/CeO2 catalyst exhibits enhanced activity and stability for CO oxidation. This strategy of constructing SMSI can be extended not only to other noble metal systems (such as Au/TiO2, Pd/TiO2, and Pt/TiO2) but also on non-reducible oxide supports (such as Pt/Al2O3, Au/MgO, and Pt/SiO2), providing a universal way to engineer and develop high-performance supported noble metal catalysts.


2021 ◽  
Vol 53 ◽  
pp. 101721
Author(s):  
Douglas José Faria ◽  
Leonardo Moreira dos Santos ◽  
Franciele Longaray Bernard ◽  
Ingrid Selbacch Pinto ◽  
Ivan Pacheco Romero ◽  
...  

2021 ◽  
Author(s):  
Xiaoben Zhang ◽  
Zhimin Li ◽  
Wei Pei ◽  
Gao Li ◽  
Wei Liu ◽  
...  

Restructuring of supported metal nanoparticles (NPs) e.g., reshaping and redispersion are of tremendous interest for the rational design of high-efficiency catalyst materials with precise particle sizes, shapes, and reactivities. Here we show a crystal phase mediated restructuring of Pt NPs on TiO2, as a simple approach for fabricating either atomically dispersed single atoms (SAs) or reshaped planar NPs of Pt catalysts with tunable reactivities. Utilizing a variety of state-of-the-art characterizations, we showed that rutile TiO2 favors the reshaping of 2D planar Pt NPs, whereas the anatase surface facilitates the redispersion of Pt NPs to SAs upon calcination in the air up to 400 ºC. Environmental transmission electron microscopy (ETEM) and density function theory (DFT) calculations were employed to directly visualize the dynamic transformation of Pt NPs and reveal the specific role that TiO2 supports play in promoting the stability and diffusion of Pt SAs. As a result, the reverse reactivity was achieved by tunning their distinct restructuring behaviors. Thus, the Pt SAs on anatase TiO2 preferentially activated selective hydrogenation of phenylacetylene (21.22 x 10-2 s-1 at 50 ºC), while planar Pt NPs on rutile significantly enhanced the combustion of methane (3.11 x 10-2 s-1 at 310 ºC). Our results therefore open up new routes for tuning the restructuring behavior of supported metal catalysts and designing catalysts with controlled catalytic structures and reactivities.


Sign in / Sign up

Export Citation Format

Share Document