molybdenum carbide
Recently Published Documents


TOTAL DOCUMENTS

810
(FIVE YEARS 243)

H-INDEX

69
(FIVE YEARS 15)

Author(s):  
Zongyun Mu ◽  
Ting Guo ◽  
Hao Fei ◽  
Dingsheng Xu ◽  
Yaoqing Mao ◽  
...  

Molybdenum carbide (Mo2C) has received great attention as a promising non-noble metal electrocatalyst for hydrogen evolution reaction (HER). The exposure of more catalytic sites and optimal Mo-H bonding strength via...


Author(s):  
Kushagra Agrawal ◽  
Alberto Roldan ◽  
Nanda Kishore ◽  
Andrew J Logsdail

The hydrodeoxygenation of guaiacol is modelled over a (100) β-Mo2C surface using density functional theory and microkinetic simulations. The thermochemistry of the process shows that the demethoxylation of the guaiacol,...


Author(s):  
Jinfeng Liu ◽  
Ping Wang ◽  
Lulu Gao ◽  
Xuefei Wang ◽  
Huogen Yu

Hexagonal molybdenum carbide (Mo2C) with a similar structure to Pt as a cocatalyst has been extensively researched in the field of photocatalytic hydrogen evolution. However, owing to its limited hydrogen-evolution...


2021 ◽  
Author(s):  
Kushagra Agrawal ◽  
Alberto Roldan ◽  
Nanda Kishore ◽  
Andrew J Logsdail

The hydrodeoxygenation of guaiacol is modelled over a (100) β-Mo2C surface using density functional theory and microkinetic simulations. The thermochemistry of the process shows that the demethoxylation of the guaiacol, to form phenol, will be the initial steps, with a reaction energy of 29 kJ/mol (i.e. endothermic) and a highest activation barrier of 112 kJ/mol. Subsequently, the dehydroxylation of the phenol, which has a rate-determining activation barrier of 145 kJ/mol, will lead to the formation of benzene, with an overall reaction energy for conversion from guaiacol of -91 kJ/mol (i.e. exothermic).


Author(s):  
Murugesan Duraisamy ◽  
Elancheziyan Mari ◽  
Viswanathan Chinnuswamy ◽  
Sellappan Senthilkumar ◽  
Yuan-Chung Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document