Dopant-Free Hole Transport Material Boosting the Performance of Inverted Methylamine-Free Perovskite Solar Cells

Author(s):  
Li Wan ◽  
Yulin Tan ◽  
Yang Zhao ◽  
Lingyun Lou ◽  
Zhongsheng Wang

The great progress in power conversion efficiency (PCE) for methylamine (MA)-free inverted perovskite solar cells (PSCs) is inseparable from the rapid development of the hole transport layers (HTLs). We design...

RSC Advances ◽  
2016 ◽  
Vol 6 (73) ◽  
pp. 69365-69369 ◽  
Author(s):  
Fei Wu ◽  
Baohua Wang ◽  
Rui Wang ◽  
Yahan Shan ◽  
Dingyu Liu ◽  
...  

In this work, we demonstrate a dopant free hole transport material for planar perovskite solar cells using a tetraphenylethene derivative, delivering an overall power conversion efficiency of 9.12% in the absence of additives.


Author(s):  
Rui He ◽  
Shengqiang Ren ◽  
Cong Chen ◽  
Zongjin Yi ◽  
Yi Luo ◽  
...  

The past decade has witnessed rapid development of perovskite solar cells (PSCs), the record power conversion efficiency (PCE) of which has been rapidly boosted from the initial 3.8% to a...


2017 ◽  
Vol 27 (2) ◽  
pp. 121
Author(s):  
Nguyen Tran Thuat ◽  
Bui Bao Thoa ◽  
Nguyen Bao Tran ◽  
Nguyen Minh Tu ◽  
Nguyen Ngoc Minh ◽  
...  

Organometal halide perovskite materials have shown high potential as light absorbers for photovoltaic applications. In this work, perovskite planar solar cells were fabricated on corning substrates with the structure as follows: the first layer made of tantalum-doped tin oxide as transparent contact material, followed by sputtering niobium-doped titanium oxide as the compact electron transport layer; covered with perovskite CH3NH3PbI3 as the light harvester by combination between spin-coating and dipping methods; CuSCN was evaporated as the hole transport layer; the final thin Al/Ag electrodes were deposited. This configuration is shortly described as Al/TTO/NTO/CH3NH3PbI3/CuSCN/Ag. Such heterojunctions are expected to be suitable for the development of efficient hybrid solar cells. The fabricated cells were measured under the air mass 1.5 illumination condition, showed the rectification effect and exhibited a power conversion efficiency of 0.007%, with a open circuit voltage of 53.2 mV, a short circuit current of 0.36 mA/cm2, and a form factor of 37%. The power conversion efficiency will be further optimized in near future.


2017 ◽  
Vol 5 (48) ◽  
pp. 12752-12757 ◽  
Author(s):  
J. Zhang ◽  
L. J. Xu ◽  
P. Huang ◽  
Y. Zhou ◽  
Y. Y. Zhu ◽  
...  

Planar perovskite solar cells based on CMO as the HTM showed a high power conversion efficiency of 15.92%.


2019 ◽  
Vol 12 (12) ◽  
pp. 3502-3507 ◽  
Author(s):  
Yang Cao ◽  
Yunlong Li ◽  
Thomas Morrissey ◽  
Brian Lam ◽  
Brian O. Patrick ◽  
...  

Organic molecular hole-transport materials (HTMs) are appealing for the scalable manufacture of perovskite solar cells (PSCs) because they are easier to reproducibly prepare in high purity than polymeric and inorganic HTMs.


2019 ◽  
Vol 55 (37) ◽  
pp. 5343-5346 ◽  
Author(s):  
Mustafa Haider ◽  
Chao Zhen ◽  
Tingting Wu ◽  
Jinbo Wu ◽  
Chunxu Jia ◽  
...  

Nickel phthalocyanine as a hole transporting material in inverted planar perovskite solar cells leads to a power conversion efficiency of 14.3%.


2019 ◽  
Vol 7 (16) ◽  
pp. 9510-9516 ◽  
Author(s):  
Xingdong Ding ◽  
Cheng Chen ◽  
Linghao Sun ◽  
Hongping Li ◽  
Hong Chen ◽  
...  

Two novel highly efficient and low-cost phenothiazine 5,5-dioxide core building block based hole transport materials are reported, achieving a power conversion efficiency as high as 20.2%.


Sign in / Sign up

Export Citation Format

Share Document