New preparative and optical resolution method for β-lactams

Author(s):  
Fumio Toda ◽  
Koichi Tanaka ◽  
Minoru Yagi ◽  
Zafra Stein ◽  
Israel Goldberg
2015 ◽  
Vol 48 (11) ◽  
pp. 903-908 ◽  
Author(s):  
Hiroyasu Sato ◽  
Norihito Doki ◽  
Masaaki Yokota ◽  
Kenji Shimizu ◽  
Shingo Yano

ChemInform ◽  
1990 ◽  
Vol 21 (32) ◽  
Author(s):  
F. TODA ◽  
K. TANAKA ◽  
M. YAGI ◽  
Z. STEIN ◽  
I. GOLDBERG

2019 ◽  
Vol 63 (2) ◽  
pp. 303-311
Author(s):  
Amit Zodge ◽  
Márton Kőrösi ◽  
János Madarász ◽  
Imre Miklós Szilágyi ◽  
Erzsébet Varga ◽  
...  

A new, rapid optical resolution method of 4-chloromandelic acid is presented using (R)-1-phenylethanamine as the resolving agent. Gas antisolvent fractionation was investigated as the separation method, studying the effect of pressure, temperature and carbon dioxide to organic solvent mass ratio in details. Generally, the method offers green operation using supercritical carbon dioxide as the precipitative agent, and can be less time- and organic solvent-intensive than conventional processes. By upscaling, the possibility of controlling the crystal-morphology might also be improved. At 16 MPa, 40 °C and 7.5 carbon dioxide to methanol ratio 72 % enantiomeric excess was reached in the crystalline product, along a 73 % yield. The resolution efficiency was not affected by any of the operational parameters. Enantiomeric enrichment beyond 90 % can be carried out by repeated resolution of a scalemic mixture of the acid. Solid products were investigated using differential scanning calorimetry, powder X-ray diffraction and scanning electron microscopy confirming the formation of a crystalline (R)-1-phenylethanammonium-4-chloromandelate salt.


Sign in / Sign up

Export Citation Format

Share Document