Novel highly efficient absolute optical resolution method by serial combination of two asymmetric reactions from acetylene monomers having racemic substituents

Chirality ◽  
2022 ◽  
Author(s):  
Yanan Tang ◽  
Lijia Liu ◽  
Junpei Suzuki ◽  
Masahiro Teraguchi ◽  
Takashi Kaneko ◽  
...  
2015 ◽  
Vol 48 (11) ◽  
pp. 903-908 ◽  
Author(s):  
Hiroyasu Sato ◽  
Norihito Doki ◽  
Masaaki Yokota ◽  
Kenji Shimizu ◽  
Shingo Yano

2015 ◽  
Vol 2 (1) ◽  
pp. 73-89 ◽  
Author(s):  
Han-Qing Dong ◽  
Ming-Hua Xu ◽  
Chen-Guo Feng ◽  
Xing-Wen Sun ◽  
Guo-Qiang Lin

The highly efficient asymmetric reactions of chiral sulfinyl auxiliary, diene ligands and sulfur–olefin ligands are presented.


ChemInform ◽  
1990 ◽  
Vol 21 (32) ◽  
Author(s):  
F. TODA ◽  
K. TANAKA ◽  
M. YAGI ◽  
Z. STEIN ◽  
I. GOLDBERG

2019 ◽  
Vol 63 (2) ◽  
pp. 303-311
Author(s):  
Amit Zodge ◽  
Márton Kőrösi ◽  
János Madarász ◽  
Imre Miklós Szilágyi ◽  
Erzsébet Varga ◽  
...  

A new, rapid optical resolution method of 4-chloromandelic acid is presented using (R)-1-phenylethanamine as the resolving agent. Gas antisolvent fractionation was investigated as the separation method, studying the effect of pressure, temperature and carbon dioxide to organic solvent mass ratio in details. Generally, the method offers green operation using supercritical carbon dioxide as the precipitative agent, and can be less time- and organic solvent-intensive than conventional processes. By upscaling, the possibility of controlling the crystal-morphology might also be improved. At 16 MPa, 40 °C and 7.5 carbon dioxide to methanol ratio 72 % enantiomeric excess was reached in the crystalline product, along a 73 % yield. The resolution efficiency was not affected by any of the operational parameters. Enantiomeric enrichment beyond 90 % can be carried out by repeated resolution of a scalemic mixture of the acid. Solid products were investigated using differential scanning calorimetry, powder X-ray diffraction and scanning electron microscopy confirming the formation of a crystalline (R)-1-phenylethanammonium-4-chloromandelate salt.


Author(s):  
Fumio Toda ◽  
Koichi Tanaka ◽  
Minoru Yagi ◽  
Zafra Stein ◽  
Israel Goldberg

Sign in / Sign up

Export Citation Format

Share Document