scholarly journals Oxidation of human haemoglobin by copper. Mechanism and suggested role of the thiol group of residue β-93

1977 ◽  
Vol 165 (1) ◽  
pp. 141-148 ◽  
Author(s):  
C C Winterbourn ◽  
R W Carrell

Addition of Cu(II) ions to human oxyhaemoglobin caused the rapid oxidation of the haem groups of the beta-chain. Oxidation required binding of Cu(II) to sites involving the thiol group of beta-93 residues and was prevented when these groups were blocked with iodoacetamide or N-ethylmaleimide. Equilibrium-dialysis studies showed three pairs of binding sites, two pairs with high affinity for Cu(II) and one pair with lower affinity. It was the second pair of high-affinity sites that were blocked with iodoacetamide and were involved in haem oxidation. Cu(II) oxidized deoxyhaemoglobin at least ten times as fast as oxyhaemoglobin, and analysis of rates suggested that binding rather than electron transfer was the rate-determining step. No thiol-group oxidation to disulphides occurred during the period of haem oxidation, although it did occur subsequently in the presence of oxygen, or when Cu(II) was added to methaemoglobin. It is proposed that thiol oxidation did not occur because there exists a pathway of electron transfer between the haem group and copper bound to the beta-93 thiol groups. The route for this electron transfer is discussed, as well as the implications as to the function of the beta-93 cysteine in the haemoglobin molecule.

Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 164
Author(s):  
Lina Son ◽  
Elena Kryukova ◽  
Rustam Ziganshin ◽  
Tatyana Andreeva ◽  
Denis Kudryavtsev ◽  
...  

Cobra venoms contain three-finger toxins (TFT) including α-neurotoxins efficiently binding nicotinic acetylcholine receptors (nAChRs). As shown recently, several TFTs block GABAA receptors (GABAARs) with different efficacy, an important role of the TFTs central loop in binding to these receptors being demonstrated. We supposed that the positive charge (Arg36) in this loop of α-cobratoxin may explain its high affinity to GABAAR and here studied α-neurotoxins from African cobra N. melanoleuca venom for their ability to interact with GABAARs and nAChRs. Three α-neurotoxins, close homologues of the known N. melanoleuca long neurotoxins 1 and 2, were isolated and sequenced. Their analysis on Torpedocalifornica and α7 nAChRs, as well as on acetylcholine binding proteins and on several subtypes of GABAARs, showed that all toxins interacted with the GABAAR much weaker than with the nAChR: one neurotoxin was almost as active as α-cobratoxin, while others manifested lower activity. The earlier hypothesis about the essential role of Arg36 as the determinant of high affinity to GABAAR was not confirmed, but the results obtained suggest that the toxin loop III may contribute to the efficient interaction of some long-chain neurotoxins with GABAAR. One of isolated toxins manifested different affinity to two binding sites on Torpedo nAChR.


2012 ◽  
Vol 449 (2) ◽  
pp. 333-341 ◽  
Author(s):  
Chiara Saggioro ◽  
Anne Olliver ◽  
Bianca Sclavi

The DnaA protein is a key factor for the regulation of the timing and synchrony of initiation of bacterial DNA replication. The transcription of the dnaA gene in Escherichia coli is regulated by two promoters, dnaAP1 and dnaAP2. The region between these two promoters contains several DnaA-binding sites that have been shown to play an important role in the negative auto-regulation of dnaA expression. The results obtained in the present study using an in vitro and in vivo quantitative analysis of the effect of mutations to the high-affinity DnaA sites reveal an additional effect of positive autoregulation. We investigated the role of transcription autoregulation in the change of dnaA expression as a function of temperature. While negative auto-regulation is lost at dnaAP1, the effects of both positive and negative autoregulation are maintained at the dnaAP2 promoter upon lowering the growth temperature. These observations can be explained by the results obtained in vitro showing a difference in the temperature-dependence of DnaA–ATP binding to its high- and low-affinity sites, resulting in a decrease in DnaA–ATP oligomerization at lower temperatures. The results of the present study underline the importance of the role for autoregulation of gene expression in the cellular adaptation to different growth temperatures.


1994 ◽  
Vol 267 (6) ◽  
pp. C1543-C1552 ◽  
Author(s):  
M. Kimura ◽  
K. Nakamura ◽  
J. W. Fenton ◽  
T. T. Andersen ◽  
J. P. Reeves ◽  
...  

The role of external Na+ in agonist-evoked platelet Ca2+ response is poorly understood. This was explored in this study. Removal of external Na+ decreased both cytosolic Ca2+ mobilization and external Ca2+ entry, induced by thrombin but not by ADP or vasopressin. That external Na+ regulates thrombin activities was demonstrated by 1) Na+ dependency of the amidolytic activity of thrombin, 2) inhibition of thrombin binding to the high-affinity binding sites in Na(+)-free medium, and 3) attenuation of thrombin-induced inositol 1,4,5-trisphosphate production in Na(+)-free medium. Moreover, Ca2+ response to the thrombin receptor 6-amino acid peptide was independent of external Na+. The role of external Na+ in modifying agonist-evoked Ca2+ response through activation of Na+/H+ antiport and cytosolic alkalinization was then explored. Cytosolic alkalinization by monensin or NH4Cl enhanced thrombin, ADP, and thimerosal-induced external Ca2+ entry. Thimerosal-induced acceleration of external Ca2+ entry was diminished by the inhibition of Na+/H+ antiport. Thus external Na+ enhances thrombin activities, and cytosolic pH mediates store-regulated external Ca2+ entry. However, Na+/H+ antiport activation is not essential for agonist-evoked Ca2+ mobilization and external Ca2+ entry.


1977 ◽  
Author(s):  
G. Marguerie

The calcium binding properties of bovin fibrinogen have been studied using equilibrium dialysis method. At pH 7.5 fibrinogen has 3 specific calcium binding sites of high affinity and several non specific binding sites of low affinity. Direct titration of the calcium induced proton release indicates that the binding center is a chelate. Thermal an acid denaturation is found to be markedly influenced by the presence of Ca++, suggesting that structural features are related to the binding. However the circular dichroism spectra show that no generalized conformational change is induced when Ca++ is bound to the protein.The plasminic digestion of fibrinogen is also found to be specificaly influenced by Ca++. The velocity of the initial cleavages is slightly reduced in the presence of calcium. It is therefore suggested that the C-terminal part of the Aα chain is involved in the binding.Considering the dimeric structure of the fibrinogen molecule, the presence of only 3 calcium binding sites of high affinity suggests the existence of “salt bridges” between the constitutive polypeptide chains.


1991 ◽  
Vol 69 (12) ◽  
pp. 809-820 ◽  
Author(s):  
William Goumakos ◽  
Jean-Pierre Laussac ◽  
Bibudhendra Sarkar

The binding of Cd(II) and Zn(II) to human serum albumin (HSA) and dog serum albumin (DSA) has been studied by equilibrium dialysis and 113Cd(II)-NMR techniques at physiological pH. Scatchard analysis of the equilibrium dialysis data indicate the presence of at least two classes of binding sites for Cd(II) and Zn(II). On analysis of the high-affinity class of sites, HSA is shown to bind 2.08 ± 0.09 (log K = 5.3 ± 0.6) and 1.07 ± 0.12 (log K = 6.4 ± 0.8) moles of Cd(II) and Zn(II) per mole of protein, respectively. DSA bound 2.02 ± 0.19 (log K = 5.1 ± 0.8), and 1.06 ± 0.15 (log K = 6.0 ± 0.2) moles of Cd(II) and Zn(II) per mole of protein, respectively. Competition studies indicate the presence of one high-affinity Cd(II) site on both HSA and DSA that is not affected by Zn(II) or Cu(II), and one high-affinity Zn(II) site on both HSA and DSA that is not affected by Cd(II) or Cu(II). 113Cadmium-HSA spectra display three resonances corresponding to three different sites of complexation. In site I, Cd(II) is most probably coordinated to two or three histidyl residues, site II to one histidyl residue and three oxygen ligands (carboxylate), while for the most upfield site III, four oxygens are likely to be involved in the binding of the metal ion. The 113Cd(II)-DSA spectra display only two resonances corresponding to two different sites of complexation. The environment around Cd(II) at sites I and II on DSA is similar to sites I and II, respectively, on HSA. No additional resonances are observed in any of these experiments and in particular in the low field region where sulfur coordination occurs. Overall, our results are consistent with the proposal that the physiologically important high-affinity Zn(II) and Cd(II) binding sites of albumins are located not at the Cu(II)-specific NH2-terminal site, but at internal sites, involving mostly nitrogen and oxygen ligands and no sulphur ligand.Key words: albumin, human serum, dog serum, cadmium, zinc, copper, NMR, equilibrium dialysis, binding.


1989 ◽  
Vol 256 (5) ◽  
pp. F909-F915 ◽  
Author(s):  
D. C. Manning ◽  
S. H. Snyder

We have localized high affinity [3H]bradykinin receptor binding sites by in vitro autoradiography in kidney, ureter, and bladder of the guinea pig. The peptide pharmacology of the binding sites corresponds to that of high affinity physiological bradykinin receptors previously described (Manning, D. C., R. Vavrek, J. M. Stewart, and S. H. Snyder. J. Pharmacol. Exp. Ther. 237:504-512, 1986). In the kidney, receptors are concentrated in the medulla with negligible binding in the cortex. Medullary receptors are localized to the interstitium just beneath the basal membrane of collecting tubule cells and between tubules. In the ureter and bladder, receptors are confined to the lamina propria just beneath the epithelial layer. Localizations in the kidney may relate to the diuretic and natriuretic actions of bradykinin. Ureteral and bladder receptors may be associated with a role of bradykinin in pain and inflammation.


1981 ◽  
Vol 200 (2) ◽  
pp. 295-305 ◽  
Author(s):  
E Dahlig-Harley ◽  
Y Eilam ◽  
A R P Paterson ◽  
C E Cass

Nitrobenzylthioinosine (NBMPR) binds reversibly, but with high affinity (Kd 0.1--1.2 nM), to inhibitory sites on nucleoside-transport elements of the plasma membrane in a variety of animal cells. The present study explored relationships in HeLa cells between NBMPR binding and inhibition of uridine transport. The Km value for inward transport of uridine by HeLa cells in both suspension and monolayer culture was about 0.1 mM. The affinity of the transport-inhibitory sites for uridine (Kd 1.7 mM), inosine (Kd 0.4 mM) and other nucleoside permeants was low relative to that for NBMPR. The pyrimidine homologue of NBMPR, nitrobenzylthiouridine, also exhibited low affinity for the NBMPR-binding sites. Pretreatment of HeLa cells with p-chloromercuribenzene sulphonate (p-CMBS) or N-ethylmaleimide (NEM) decreased binding of NBMPR to its high-affinity sites and inhibited uridine transport, indicating the presence of thiol groups essential to both processes. NEM, a more penetrable reagent than p-CMBS, inhibited binding and transport at much lower concentrations than the latter compound. Pretreatment of cells with concentrations of p-CMBS that alone had no effect on either NBMPR binding or uridine transport increased the sensitivity of transport to NBMPR inhibition and changed the shape of the NBMPR concentration-effect curve, suggesting synergistic inhibiton of uridine-transport activity by these two agents.


1975 ◽  
Author(s):  
R. Benarous ◽  
J. Elion

The Ca++ binding properties of human prothrombin were studied by equilibrium dialysis using 45 calcium chloride at +4° C with prothrombin concentration of about 1 mg/ml equilibrated in 0.025 M Tris HCl, 0.12 M NaCl buffer pH 7.4. Scatchard plots obtained were similar to those described by Steenflo (1973) for bovine prothrombin, suggesting a positive cooperativity in the binding of Ca++ with a maximum ratio of bound Ca++/free Ca++ of 3 moles of Ca++ bound per mole of protein.The total number of binding sites was found to be at about 7, less than 10 to 12 found for bovine prothrombin. Ca++ binding was dependent on pH variation of the buffer with a maximum value for pH 8.5. Chemical modifications of carboxyl groups of prothrombin according to Hoare and Koshland (1967) abolished the Ca++ binding ability of the molecule confirming the essential role of these residues in this specific property of prothrombin.


Sign in / Sign up

Export Citation Format

Share Document