scholarly journals Binding of Calcium to Fibrinogen: Some Related Properties

1977 ◽  
Author(s):  
G. Marguerie

The calcium binding properties of bovin fibrinogen have been studied using equilibrium dialysis method. At pH 7.5 fibrinogen has 3 specific calcium binding sites of high affinity and several non specific binding sites of low affinity. Direct titration of the calcium induced proton release indicates that the binding center is a chelate. Thermal an acid denaturation is found to be markedly influenced by the presence of Ca++, suggesting that structural features are related to the binding. However the circular dichroism spectra show that no generalized conformational change is induced when Ca++ is bound to the protein.The plasminic digestion of fibrinogen is also found to be specificaly influenced by Ca++. The velocity of the initial cleavages is slightly reduced in the presence of calcium. It is therefore suggested that the C-terminal part of the Aα chain is involved in the binding.Considering the dimeric structure of the fibrinogen molecule, the presence of only 3 calcium binding sites of high affinity suggests the existence of “salt bridges” between the constitutive polypeptide chains.

1992 ◽  
Vol 267 (2) ◽  
pp. 825-831 ◽  
Author(s):  
J C Negele ◽  
D G Dotson ◽  
W Liu ◽  
H L Sweeney ◽  
J A Putkey

1998 ◽  
Vol 279 (1) ◽  
pp. 189-199 ◽  
Author(s):  
Michel O Steinmetz ◽  
Christoph Plüss ◽  
Urs Christen ◽  
Bettina Wolpensinger ◽  
Ariel Lustig ◽  
...  

1987 ◽  
Author(s):  
C M Chesney ◽  
D D Pifer

Gel filtered human platelets (GFP) collected in Tyrode's buffer containing 0.5 mM Ca+2, ImM Mg+2, and 0.35% albumin exhibit high affinity binding of 3H-PAF with a Kd of 0.109 α 0.029 nM (mean α SD; n=13) and 267 α 70 sites per platelet. When fibrinogen (1.67 mg/ml final concentration) is added to these GFP preparations biphasic aggregation is observed with PAF (4 nM). Normal aggregation is also observed with other platelet agonists including ADP, epinephrine, collagen, arachidonic acid, A23187 and thrombin. If GFP is prepared without added Ca+2 or Mg+2 in the presence of 3mM EDTA, platelets do not aggregate in response to PAF. However the number of specific binding sites remains unchanged (387 per platelet) with some decrease in affinity of binding (Kd = 0.2l4nM). In the presence of ImM Mg+2 there is no significant difference in binding kinetics over a range of Ca+2 concentrations (0-2mM). On the other hand the calcium channel blocker verapamil (5-10uM) exhibits competitive inhibition of 3H-PAF as analyzed by Lineweaver-Burk plots. Specific binding of 3H-PAF to GFP in the presence of ImM Mg+2 and ImM EGTA shows Kd of 0.l66nM but with increase in specific binding sites to 665. Despite increase in number of sites and no change in binding affinity, GFP under these conditions does not exhibit platelet aggregation with PAF in doses up to 80 nM.From these data it appears that external Ca+2 is not necessary for specific binding of 3H-PAF to its high affinity receptor. However, calcium does appear to be necessary for second wave aggregation with PAF. While Mg+2 appears to enhance 3H-PAF binding to platelets Mg+2 cannot substitute for Ca+2 in PAF induced platelet aggregation. Although verapamil appears to competitively inhibit binding of PAF to GFP it is not clear whether the inhibition is due to competition at or near the actual PAF receptor or at a site involving the calcium channel.


1991 ◽  
Vol 276 (1) ◽  
pp. 35-40 ◽  
Author(s):  
G A Rivas ◽  
J González-Rodríguez

Platelet plasma membrane glycoproteins IIb (GPIIb) and IIIa (GPIIIa) form a Ca(2+)-dependent heterodimer. GPIIb/IIIa, which serves as the receptor for fibrinogen and other adhesive proteins at the surface of activated platelets. Using equilibrium dialysis measurements, it was established that both GPIIb and GPIIIa in solution have low-affinity Ca(2-)-binding sites (Kd0.2-0.3 mM), five in GPIIb and two in GPIIIa, and it was confirmed that only the alpha-chain of GPIIb (GPIIb alpha) binds Ca2+. Furthermore, Ca2+ binding was found with two CNBr fragments of GPIIb, GPIIb alpha-(1-285) and GPIIb alpha-(314-489), which carry three out of the four putative Ca(2+)-binding sites. GPIIb/IIIa in solution has a single high-affinity Ca(2+)-binding site (Kd1 80 +/- 30 nM at 21 degrees C), whose degree of saturation regulates the state of association of GPIIb and GPIIIa in the GPIIb/IIIa heterodimer at room temperature, and 3-4 medium-affinity Ca(2+)-binding sites (Kd2 40 +/- 15 microM at 21 degrees C). When GPIIb/IIIa was incorporated into liposomes, Kd1 decreased by an order of magnitude (9 +/- 3 nM at 21 degrees C) and reached the dissociation constant estimated for the high-affinity Ca(2+)-binding sites at the platelet surface [Brass & Shattil (1982) J. Biol. Chem. 257, 1400-1405], whereas Kd2 remained unchanged. The high-affinity Ca(2+)-binding site of GPIIb/IIIa in solution at 4 degrees C has almost the same affinity (Kd1 65 +/- 20 nM) as at 21 degrees C; however, at 37 degrees C, either its affinity decreases enough so as to become experimentally indistinguishable from the medium-affinity Ca(2+)-binding sites determined at this temperature (number of binding sites 3.9 +/- 1.2 mol of Ca2+/mol of GP, Kd 25 +/- 11 microM), or vanishes altogether. Studies on Ca(2+)-dependent dissociation of GPIIIb/IIIa at 37 degrees C in solution seem to support the former interpretation. Further work will be necessary to decide whether the dissociation of GPIIb/IIIa in the platelet membrane at 37 degrees C is regulated by the degree of saturation of the high-affinity Ca(2+)-binding site, as occurs in solution. It is suggested that the high-affinity Ca(2+)-binding site could be related to the putative GPIIIa-binding region in GPIIb (residues 558-747 of the alpha chain).


1994 ◽  
Vol 301 (2) ◽  
pp. 591-598 ◽  
Author(s):  
I C Marshall ◽  
C W Taylor

Cytosolic Ca2+ biphasically regulates Ins(1,4,5)P3-stimulated Ca2+ mobilization in liver [Marshall and Taylor (1993) J. Biol. Chem. 268, 13214-13220]. We have investigated the mechanisms underlying this biphasic control of Ca2+ mobilization in permeabilized hepatocytes by comparing the effects of Sr2+, Ba2+ and Ca2+ on the liver Ins(1,4,5)P3 receptor. Both Ca2+ and Sr2+ increased the binding of [3H]Ins(1,4,5)P3 to liver membranes by converting receptors from a low-affinity (KD approximately 35 nM) to a high-affinity (KD approximately 5 nM) state. Ba2+ (< or = 20 microM) did not affect [3H]Ins(1,4,5)P3 binding. At concentrations similar to those that caused an enhancement of [3H]Ins(1,4,5)P3 binding, Sr2+ (EC50 = 570 nM) and Ca2+ (EC50 = 200 nM) increased the sensitivity of the intracellular Ca2+ stores to Ins(1,4,5)P3. Further modest elevations in [Ca2+] (EC50 = 1.5 microM) inhibited Ins(1,4,5)P3-stimulated Ca2+ mobilization, whereas Sr2+ caused inhibition only when its concentration was very substantially increased (EC50 approximately 900 microM). Sr2+ is therefore only 3-fold less potent than Ca2+ in causing sensitization of Ins(1,4,5)P3-stimulated Ca2+ release, but 600-fold less potent in causing inhibition. Ba2+ neither sensitized ([Ba2+] < or = 20 microM) nor inhibited ([Ba2+] < or = 1 mM) Ins(1,4,5)P3-stimulated Ca2+ release, and did not inhibit either the sensitization of Ca2+ release evoked by Sr2+ or the inhibition of Ca2+ release evoked by Ca2+. Our results suggest that two distinct Ca(2+)-binding sites, which differ in their selectivities for bivalent cations, mediate the interconversion of Ins(1,4,5)P3 receptors between at least three different conformational states. These two Ca(2+)-binding sites, which may reside either on the Ins(1,4,5)P3 receptor itself or on distinct regulatory proteins, can be distinguished by their different selectivities for bivalent cations.


1984 ◽  
Vol 62 (6) ◽  
pp. 398-408 ◽  
Author(s):  
R. Blaine Moore ◽  
E. E. Dryden ◽  
D. I. C. Kells ◽  
J. F. Manery

Calcium binding to leaky erythrocyte plasma membranes was measured by three different procedures: Millipore filtration, equilibrium dialysis, and partition centrifugation. The curve derived from the binding equation, which best fit the means of the raw data, was used to estimate the association constants and capacities of the binding sites. A computer program (Gaushaus) which uses a nonlinear, least-squares regression protocol was also used to confirm these estimates. On the basis of these analyses we propose the presence of three classes of calcium-binding sites with the following apparent association constants and capacities: site 1, Ka = 3 × 104 M−1 and n = 30 nmol/mg protein; site 2, Ka = 3 × 103 M−1 and n = 200 nmol/mg protein; site 3, Ka = ~102 M−1 and n = ~200 nmol/mg protein. Calcium binding to erythrocyte membranes sealed in a high-salt solution showed the presence of site 3, but not site 2. The influence of phospholipids on the binding of calcium was evaluated by pretreating ghosts with phospholipase C (Clostridium welchii, EC 3.1.4.3). Treatment with this enzyme removed 80% of the total membrane phosphorus, predominantly from sphingomyelin, phosphatidylcholine, and phosphatidylethanolamine. By the method of partition centrifugation two classes of binding sites were identified by computer analysis. Their association constants and capacities are, respectively, 1.1 × 105 M−1 and 20 nmol/mg protein for site 1 and 4.4 × 103 M−1 and 200 nmol/mg protein for site 2. We speculate that calcium-binding site 1 is composed of acidic phospholipids, calcium-binding site 2 is composed of spectrin and actin, and calcium-binding site 3 is composed of sialic acid.


1999 ◽  
Vol 881 (1 IMIDAZOLINE R) ◽  
pp. 185-188 ◽  
Author(s):  
F. M. J. HEEMSKERK ◽  
M. DONTENWILL ◽  
H. GRENEY ◽  
C. VONTHRON ◽  
P. BOUSQUET

1987 ◽  
Author(s):  
Bjorn Dahiback ◽  
Ake Lundwall ◽  
Andreas Hillarp ◽  
Johan Malm ◽  
Johan Stenflo

Protein S is a single chain (Mr 75.000) plasma protein. It is a cofactor to activated protein C (APC) in the regulation of coagulation factors Va and Villa. It has high affinity for negatively charged phospolipids and it forms a 1:1 complex with APC on phospholipid surfaces, platelets and on endothelial cells. Patients with heterozygous protein S deficiency have a high incidence of thrombosis. Protein S is cleaved by thrombin, which leads to a loss of calcium binding sites and of APC cofactor activity. Protein S has two to three high affinity (KD 20uM) calcium binding sites - unrelated to the Gla-region - that are unaffected by the thrombin cleavage. In human plasma protein S (25 mg/liter) circulates in two forms; free (approx. 40%) and in a 1:1 noncovalent complex (KD 1× 10-7M) with the complement protein C4b-binding protein (C4BP). C4BP (Mr 570.000) is composed of seven identical 70 kDa subunits that are linked by disulfide bonds. When visualized by electron microscopy, C4BP has a spiderlike structure with the single protein S binding site located close to the central core and one C4b-binding site on each of the seven tentacles. When bound to C4BP, protein S looses its APC cofactor activity, whereas the function-of C4BP is not directly affected by the protein S binding. Chymotrypsin cleaves each of the seven C4BP subunits close to the central core which results in the liberation of multiple 48 kDa “tentacte” fragments and the formation of a 160 kDa central core fragment. We have successfully isolated a 160 kDa central core fragment with essentially intact protein S binding ability.The primary structure of both bovine and human protein S has been determined and found to contain 635 and 634 amino acids, respectively, with 82 % homology to each other. Four different regions were distinguished; the N-terminal Gla-domain (position 1-45) was followed by a region which has two thrombin-sensitive bonds positioned within a disulfide loop. Position 76 to 244 was occupied by four repeats homologous to the epidermal growth factor (EGF) precursor. In the first EGF-domain a modified aspartic acid was identified at position 95, B-hydroxaspartic acid (Hya), and in corresponding positions in the three following EGF-domains (positions 136,178 and 217) we found B-hydroxyasparagine (Hyn). Hyn has not previously been identified in proteins. The C-terminal half of protein S (from position 245) shows no homology to the serine proteases but instead to human Sexual Hormon Binding Globulin (SHBG)(see separate abstract). To study the structure-function relationship we made eighteen monoclonal antibodies to human protein S. The effects of the monoclonals on the C4BP-protein S interaction and on the APC cofactor activity were analysed. Eight of the antibodies were calciumdependent, four of these were against the Gla-domain, two against the thrombin sensitive portion and two against the region bearing the high affinity calcium binding sites. Three of the monoclonals were dependent on the presence of chelating agents, EDTA or EGTA, and were probably directed against the high affinity calcium binding region. Three other monoclonals inhibited the protein S-C4BP interaction. At present, efforts are made to localize the epitopes to gain information about functionally important regions of protein S.


Sign in / Sign up

Export Citation Format

Share Document