scholarly journals The effects of acridine orange on deoxyribonucleic acid in Escherichia coli

1978 ◽  
Vol 171 (3) ◽  
pp. 567-573 ◽  
Author(s):  
G R Barker ◽  
N Hardman

1. Acridine Orange inhibits growth of Escherichia coli K12 when incubated at pH 7.9, but not at pH 7.4.2. At a non-permissive temperature for DNA polymerase I, Acridine Orange inhibits growth of a temperature-sensitive strain and also increases the rate of elimination of the F'-Lac plasmid. 3. DNA isolated from cells treated with Acridine Orange under conditions that inhibit growth contains material of low molecular weight, which is absent from DNA isolated from cells treated under conditions in which growth is not impaired. 4. Cells incubated with Acridine Orange at both pH 7.4 and 7.9 suffer degradation of DNA, as shown by loss of labelled DNA from the acid-insoluble fraction, which is not observed with untreated cells at either pH. 5. The results suggest that elimination of the F'-Lac plasmid by Acridine Orange requires inactivation of repair processes.

Genetics ◽  
1995 ◽  
Vol 139 (4) ◽  
pp. 1483-1494 ◽  
Author(s):  
Y Cao ◽  
T Kogoma

Abstract The mechanism of recA polA lethality in Escherichia coli has been studied. Complementation tests have indicated that both the 5'-->3' exonuclease and the polymerization activities of DNA polymerase I are essential for viability in the absence of RecA protein, whereas the viability and DNA replication of DNA polymerase I-defective cells depend on the recombinase activity of RecA. An alkaline sucrose gradient sedimentation analysis has indicated that RecA has only a minor role in Okazaki fragment processing. Double-strand break repair is proposed for the major role of RecA in the absence of DNA polymerase I. The lexA(Def)::Tn5 mutation has previously been shown to suppress the temperature-sensitive growth of recA200(Ts) polA25::spc mutants. The lexA(Def) mutation can alleviate impaired DNA synthesis in the recA200(Ts) polA25::spc mutant cells at the restrictive temperature. recF+ is essential for this suppression pathway. recJ and recQ mutations have minor but significant adverse effects on the suppression. The recA200(Ts) allele in the recA200(Ts) polA25::spc lexA(Def) mutant can be replaced by delta recA, indicating that the lexA(Def)-induced suppression is RecA independent. lexA(Def) reduces the sensitivity of delta recA polA25::spc cells to UV damage by approximately 10(4)-fold. lexA(Def) also restores P1 transduction proficiency to the delta recA polA25::spc mutant to a level that is 7.3% of the recA+ wild type. These results suggest that lexA(Def) activates a RecA-independent, RecF-dependent recombination repair pathway that suppresses the defect in DNA replication in recA polA double mutants.


1973 ◽  
Vol 51 (10) ◽  
pp. 1399-1401
Author(s):  
L. M. Hoepfinger ◽  
C. D. Morgan ◽  
C. L. Lakanen

The excision of nucleotides from altered DNA or d(A-T) copolymer by Escherichia coli DNA polymerase I was measured. Altered DNA or d(A-T) copolymer was produced by treating radioactive DNA or d(A-T) copolymer with nitrous acid, formaldhehyde, or acridine orange. The resultant products were subjected to DNA polymerase I treatment. Excision of nucleotides occurred to a greater extent from the nitrous acid and formaldehyde treated materials than it did from untreated material. DNA treated with acridine orange snowed no significant differences in excision relative to untreated DNA.


Genetics ◽  
1990 ◽  
Vol 124 (2) ◽  
pp. 213-220 ◽  
Author(s):  
L J Reha-Krantz

Abstract Intragenic complementation was detected within the bacteriophage T4 DNA polymerase gene. Complementation was observed between specific amino (N)-terminal, temperature-sensitive (ts) mutator mutants and more carboxy (C)-terminal mutants lacking DNA polymerase polymerizing functions. Protein sequences surrounding N-terminal mutation sites are similar to sequences found in Escherichia coli ribonuclease H (RNase H) and in the 5'----3' exonuclease domain of E. coli DNA polymerase I. These observations suggest that T4 DNA polymerase, like E. coli DNA polymerase I, contains a discrete N-terminal domain.


Sign in / Sign up

Export Citation Format

Share Document