scholarly journals Glucagon-stimulated adenylate cyclase detects a selective perturbation of the inner half of the liver plasma-membrane bilayer achieved by the local anaesthetic prilocaine

1980 ◽  
Vol 190 (1) ◽  
pp. 131-137 ◽  
Author(s):  
M D Houslay ◽  
I Dipple ◽  
S Rawal ◽  
R D Sauerheber ◽  
J A Esgate ◽  
...  

Prilocaine can increase the fluidity of rat liver plasma membranes, as indicated by a fatty acid spin-probe. This led to the activation of the membrane-bound fluoride-stimulated adenylate cyclase activity, but not the Lubrol-solubilized activity, suggesting that increased lipid fluidity can activate the enzyme. With increasing prilocaine concentrations above 10 mM, the membrane-bound fluoride-stimulated activity was progressively inhibited, even though bilayer fluidity continued to increase and the activity of the solubilized enzyme remained unaffected. Glucagon-stimulated adenylate cyclase was progressively inhibited by increasing prilocaine concentrations. Prilocaine (10 mM) had no effect on the lipid phase separation occurring at 28 degrees C and attributed to those lipids in the external half of the bilayer, as indicated by Arrhenius plots of both glucagon-stimulated adenylate cyclase activity and the order parameter of a fatty acid spin-probe. However, 10 mM-prilocaine induced a lipid phase separation at around 11 degrees C that was attributed to the lipids of the internal (cytosol-facing) half of the bilayer. It is suggested that prilocaine (10 mM) can selectively perturb the inner half of the bilayer of rat liver plasma membranes owing to its preferential interaction with the acidic phospholipids residing there.

1986 ◽  
Vol 235 (1) ◽  
pp. 237-243 ◽  
Author(s):  
M D Houslay ◽  
L Needham ◽  
N J Dodd ◽  
A M Grey

Incubation of rat liver plasma membranes with liposomes of dioleoyl phosphatidic acid (dioleoyl-PA) led to an inhibition of adenylate cyclase activity which was more pronounced when fluoride-stimulated activity was followed than when glucagon-stimulated activity was followed. If Mn2+ (5 mM) replaced low (5 mM) [Mg2+] in adenylate cyclase assays, or if high (20 mM) [Mg2+] were employed, then the perceived inhibitory effect of phosphatidic acid was markedly reduced when the fluoride-stimulated activity was followed but was enhanced for the glucagon-stimulated activity. The inhibition of adenylate cyclase activity observed correlated with the association of dioleoyl-PA with the plasma membranes. Adenylate cyclase activity in dioleoyl-PA-treated membranes, however, responded differently to changes in [Mg2+] than did the enzyme in native liver plasma membranes. Benzyl alcohol, which increases membrane fluidity, had similar stimulatory effects on the fluoride- and glucagon-stimulated adenylate cyclase activities in both native and dioleoyl-PA-treated membranes. Incubation of the plasma membranes with phosphatidylserine also led to similar inhibitory effects on adenylate cyclase and responses to Mg2+. Arrhenius plots of both glucagon- and fluoride-stimulated adenylate cyclase activity were different in dioleoyl-PA-treated plasma membranes, compared with native membranes, with a new ‘break’ occurring at around 16 degrees C, indicating that dioleoyl-PA had become incorporated into the bilayer. E.s.r. analysis of dioleoyl-PA-treated plasma membranes with a nitroxide-labelled fatty acid spin probe identified a new lipid phase separation occurring at around 16 degrees C with also a lipid phase separation occurring at around 28 degrees C as in native liver plasma membranes. It is suggested that acidic phospholipids inhibit adenylate cyclase by virtue of a direct headgroup specific interaction and that this perturbation may be centred at the level of regulation of this enzyme by the stimulatory guanine nucleotide regulatory protein NS.


1983 ◽  
Vol 210 (2) ◽  
pp. 437-449 ◽  
Author(s):  
A D Whetton ◽  
L M Gordon ◽  
M D Houslay

A method was devised which increases the cholesterol concentration of rat liver plasma membranes by exchange from cholesterol-rich liposomes at low temperature (4 degrees C). When the cholesterol concentration of liver plasma membranes is increased, there is an increase in lipid order as detected by a decrease in mobility of an incorporated fatty acid spin probe. This is accompanied by an inhibition of adenylate cyclase activity. The various ligand-stimulated adenylate cyclase activities exhibit different sensitivities to inhibition by cholesterol, with inhibition of glucagon-stimulated greater than fluoride-stimulated greater than basal activity. The bilayer-fluidizing agent benzyl alcohol is able to reverse the inhibitory effect of cholesterol on adenylate cyclase activity in full. The thermostability of fluoride-stimulated cyclase is increased in the cholesterol-rich membranes. Elevated cholesterol concentrations abolish the lipid-phase separation occurring at 28 degrees C in native membranes as detected by an incorporated fatty acid spin probe. This causes Arrhenius plots of glucagon-stimulated adenylate cyclase activity to become linear, rather than exhibiting a break at 28 degrees C. It is suggested that the cholesterol contents of both halves of the bilayer are increased by the method used and that inhibition of adenylate cyclase ensues, owing to the increase in lipid order and promotion of protein-protein and specific cholesterol-phospholipid interactions.


1981 ◽  
Vol 197 (3) ◽  
pp. 675-681 ◽  
Author(s):  
M D Houslay ◽  
I Dipple ◽  
L M Gordon

The glucagon-stimulated (coupled) activity of rat liver plasma-membrane adenylate cyclase could be selectively modulated by the anionic drug phenobarbital, whereas the fluoride-stimulated (uncoupled) activity remained unaffected. It is suggested that the cationic drug phenobarbital preferentially interacts with the external half of the bilayer, as the negatively charged phospholipids are found at the cytosol-facing side. This results in a selective fluidization of the external half of the bilayer, leading to a depression in the high-temperature onset of the lipid phase transition (from 28 degree to 16 degree C) occurring there. This was detected both by e.s.r. analysis, using a fatty acid spin probe, and also by Arrhenius plots of glucagon-stimulated activity, where the enzyme forms a transmembrane complex with the receptor and is sensitive to the lipid environment of both halves of the bilayer. However, in the absence of hormone, adenylate cyclase only senses the lipid environment of the inner (cytosol) half of the bilayer. Thus its fluoride stimulated activity and Arrhenius plots of this activity remained unaffected by the presence of phenobarbital (less than 12 mM) in the assay. These results support the view that independent modulation of the fluidity or chemical constituents of each half of the bilayer can selectively affect the receptor-coupled and uncoupled activities of adenylate cyclase.


1979 ◽  
Vol 178 (1) ◽  
pp. 217-221 ◽  
Author(s):  
M D Houslay ◽  
R W Palmer

1. Synthetic lysophosphatidylcholines inhibit the glucagon-stimulated adenylate cyclase activity of rat liver plasma membranes at concentrations two to five times lower than those needed to inhibit the fluoride-stimulated activity. 2. Specific 125I-labelled glucagon binding to hormone receptors is inhibited at concentrations similar to those inhibiting the fluoride-stimulated activity. 3. At concentrations of lysophosphatidylcholines immediately below those causing inhibition, an activation of adenylate cyclase activity or hormone binding was observed. 4 These effects are essentially reversible. 5. We conclude that the increased sensitivity of glucagon-stimulated adenylate cyclase to inhibition may be due to the lysophosphatidylcholines interfering with the physical coupling between the hormone receptor and catalytic unit of adenylate cyclase. 6. We suggest that, in vivo, it is possible that lysophosphatidylcholines may modulate the activity of adenylate cyclase only when it is in the hormone-stimulated state.


1985 ◽  
Vol 53 ◽  
pp. 209-217 ◽  
Author(s):  
Luciana Paradisi ◽  
Carla Panagini ◽  
Maurizio Parola ◽  
Giuseppina Barrera ◽  
Mario U. Dianzani

Sign in / Sign up

Export Citation Format

Share Document