scholarly journals The mechanism for the ATP-induced uncoupling of respiration in mitochondria of the yeast Saccharomyces cerevisiae

1995 ◽  
Vol 307 (3) ◽  
pp. 657-661 ◽  
Author(s):  
S Prieto ◽  
F Bouillaud ◽  
E Rial

We have recently reported that ATP induces an uncoupling pathway in Saccharomyces cerevisiae mitochondria [Prieto, Bouillaud, Ricquier and Rial (1992) Eur. J. Biochem. 208, 487-491]. The presence of this pathway would explain the reported low efficiency of oxidative phosphorylation in S. cerevisiae, and may represent one of the postulated energy-dissipating mechanisms present in these yeasts. In this paper we demonstrate that ATP exerts its action in two steps: first, at low ATP/Pi ratios, it increases the respiratory-chain activity, probably by altering the kinetic properties of cytochrome c oxidase. Second, at higher ATP/Pi ratios, an increase in membrane permeability leads to a collapse in membrane potential. The ATP effect on cytochrome c oxidase corroborates a recent report showing that ATP interacts specifically with yeast cytochrome oxidase, stimulating its activity [Taanman and Capaldi (1993) J. Biol. Chem. 268, 18754-18761].

2008 ◽  
Vol 19 (9) ◽  
pp. 3934-3943 ◽  
Author(s):  
Mary K. Dienhart ◽  
Rosemary A. Stuart

The ADP/ATP carrier (AAC) proteins play a central role in cellular metabolism as they facilitate the exchange of ADP and ATP across the mitochondrial inner membrane. We present evidence here that in yeast (Saccharomyces cerevisiae) mitochondria the abundant Aac2 isoform exists in physical association with the cytochrome c reductase (cytochrome bc1)-cytochrome c oxidase (COX) supercomplex and its associated TIM23 machinery. Using a His-tagged Aac2 derivative and affinity purification studies, we also demonstrate here that the Aac2 isoform can be affinity-purified with other AAC proteins. Copurification of the Aac2 protein with the TIM23 machinery can occur independently of its association with the fully assembled cytochrome bc1-COX supercomplex. In the absence of the Aac2 protein, the assembly of the cytochrome bc1-COX supercomplex is perturbed, whereby a decrease in the III2-IV2assembly state relative to the III2-IV form is observed. We propose that the association of the Aac2 protein with the cytochrome bc1-COX supercomplex is important for the function of the OXPHOS complexes and for the assembly of the COX complex. The physiological implications of the association of AAC with the cytochrome bc1-COX-TIM23 supercomplex are also discussed.


Genetics ◽  
1978 ◽  
Vol 89 (4) ◽  
pp. 653-665
Author(s):  
Arjun Singh ◽  
Fred Sherman

ABSTRACT Some of the deletions in the yeast Saccharomyces cerevisiae that encompass the CYC1 gene, which determines iso-1-cytochrome c, extend into the OSM1 gene, causing inhibition of growth on hypertonic media, and into the RAD7 gene, causing sensitivity to UV light. Two deletions (cyc1-363 and cyc1-367) encompass only the CYC1 gene, two deletions (cyc1-366 and cyc1-368) encompass the CYC1 and OSM1 genes, three deletions (cyc1-1, cyc1-364 and cyc1-365) encompass the CYC1, OSM1 and RAD7 genes, while none of the deletions extend into the closely linked SUP4 gene.


Sign in / Sign up

Export Citation Format

Share Document