oxidative phosphorylation
Recently Published Documents


TOTAL DOCUMENTS

4604
(FIVE YEARS 791)

H-INDEX

124
(FIVE YEARS 18)

2022 ◽  
Vol 8 ◽  
Author(s):  
Guli Xu ◽  
Yexian Yuan ◽  
Pei Luo ◽  
Jinping Yang ◽  
Jingjing Zhou ◽  
...  

Endurance training and explosive strength training, with different contraction protein and energy metabolism adaptation in skeletal muscle, are both beneficial for physical function and quality of life. Our previous study found that chronic succinate feeding enhanced the endurance exercise of mice by inducing skeletal muscle fiber-type transformation. The purpose of this study is to investigate the effect of acute succinate administration on skeletal muscle explosive strength and its potential mechanism. Succinate was injected to mature mice to explore the acute effect of succinate on skeletal muscle explosive strength. And C2C12 cells were used to verify the short-term effect of succinate on oxidative phosphorylation. Then the cells interfered with succinate receptor 1 (SUCNR1) siRNA, and the SUCNR1-GKO mouse model was used for verifying the role of SUCNR1 in succinate-induced muscle metabolism and expression and explosive strength. The results showed that acute injection of succinate remarkably improved the explosive strength in mice and also decreased the ratio of nicotinamide adenine dinucleotide (NADH) to NAD+ and increased the mitochondrial complex enzyme activity and creatine kinase (CK) activity in skeletal muscle tissue. Similarly, treatment of C2C12 cells with succinate revealed that succinate significantly enhanced oxidative phosphorylation with increased adenosine triphosphate (ATP) content, CK, and the activities of mitochondrial complex I and complex II, but with decreased lactate content, reactive oxygen species (ROS) content, and NADH/NAD+ ratio. Moreover, the succinate's effects on oxidative phosphorylation were blocked in SUCNR1-KD cells and SUCNR1-KO mice. In addition, succinate-induced explosive strength was also abolished by SUCNR1 knockout. All the results indicate that acute succinate administration increases oxidative phosphorylation and skeletal muscle explosive strength in a SUCNR1-dependent manner.


Author(s):  
Chenguang Yao ◽  
Jun Weng ◽  
Lingyun Feng ◽  
Wanjun Zhang ◽  
Yan Xu ◽  
...  

Increased dependence on aerobic glycolysis is characteristic of most cancer cells, whereas the mechanism underlying the promotion of aerobic glycolysis in metastatic breast cancer cells under ambient oxygen has not been well understood. Here, we demonstrated that aberrant expression of signal-induced proliferation-associated 1 (SIPA1) enhanced aerobic glycolysis and altered the main source of ATP production from oxidative phosphorylation to glycolysis in breast cancer cells. We revealed that SIPA1 promoted the transcription of EPAS1, which is known as the gene encoding hypoxia-inducible factor-2α (HIF-2α) and up-regulated the expression of multiple glycolysis-related genes to increase aerobic glycolysis. We also found that blocking aerobic glycolysis by either knocking down SIPA1 expression or oxamate treatment led to the suppression of tumor metastasis of breast cancer cells both in vitro and in vivo. Taken together, aberrant expression of SIPA1 resulted in the alteration of glucose metabolism from oxidative phosphorylation to aerobic glycolysis even at ambient oxygen levels, which might aggravate the malignancy of breast cancer cells. The present findings indicate a potential target for the development of therapeutics against breast cancers with dysregulated SIPA1 expression.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Shanshan Song ◽  
Lauren Yu ◽  
Md Nabiul Hasan ◽  
Satya S. Paruchuri ◽  
Steven J. Mullett ◽  
...  

AbstractNew research shows that disease-associated microglia in neurodegenerative brains present features of elevated phagocytosis, lysosomal functions, and lipid metabolism, which benefit brain repair. The underlying mechanisms remain poorly understood. Intracellular pH (pHi) is important for regulating aerobic glycolysis in microglia, where Na/H exchanger (NHE1) is a key pH regulator by extruding H+ in exchange of Na+ influx. We report here that post-stroke Cx3cr1-CreER+/−;Nhe1flox/flox (Nhe1 cKO) brains displayed stimulation of microglial transcriptomes of rate-limiting enzyme genes for glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. The other upregulated genes included genes for phagocytosis and LXR/RXR pathway activation as well as the disease-associated microglia hallmark genes (Apoe, Trem2, Spp1). The cKO microglia exhibited increased oxidative phosphorylation capacity, and higher phagocytic activity, which likely played a role in enhanced synaptic stripping and remodeling, oligodendrogenesis, and remyelination. This study reveals that genetic blockade of microglial NHE1 stimulated oxidative phosphorylation immunometabolism, and boosted phagocytosis function which is associated with tissue remodeling and post-stroke cognitive function recovery.


mBio ◽  
2022 ◽  
Author(s):  
Caroline E. Dewar ◽  
Aitor Casas-Sanchez ◽  
Constentin Dieme ◽  
Aline Crouzols ◽  
Lee R. Haines ◽  
...  

African trypanosomes cause disease in humans and their livestock and are transmitted by tsetse flies. The insect ingests these parasites with its blood meal, but to be transmitted to another mammal, the trypanosome must undergo complex development within the tsetse fly and migrate from the insect's gut to its salivary glands.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Anna M. Schneider ◽  
Mihriban Özsoy ◽  
Franz A. Zimmermann ◽  
Susanne M. Brunner ◽  
René G. Feichtinger ◽  
...  

Introduction. Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and ulcerative colitis (UC), is a multifactorial intestinal disorder but its precise etiology remains elusive. As the cells of the intestinal mucosa have high energy demands, mitochondria may play a role in IBD pathogenesis. The present study is aimed at evaluating the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes in IBD. Material and Methods. 286 intestinal biopsy samples from the terminal ileum, ascending colon, and rectum from 124 probands (34 CD, 33 UC, and 57 controls) were stained immunohistochemically for all five OXPHOS complexes and the voltage-dependent anion-selective channel 1 protein (VDAC1 or porin). Expression levels were compared in multivariate models including disease stage (CD and UC compared to controls) and age (pediatric/adult). Results. Analysis of the terminal ileum of CD patients revealed a significant reduction of complex II compared to controls, and a trend to lower levels was evident for VDAC1 and the other OXPHOS complexes except complex III. A similar pattern was found in the rectum of UC patients: VDAC1, complex I, complex II, and complex IV were all significantly reduced, and complex III and V showed a trend to lower levels. Reductions were more prominent in older patients compared to pediatric patients and more marked in UC than CD. Conclusion. A reduced mitochondrial mass is present in UC and CD compared to controls. This is potentially a result of alterations of mitochondrial biogenesis or mitophagy. Reductions were more pronounced in older patients compared to pediatric patients, and more prominent in UC than CD. Complex I and II are more severely compromised than the other OXPHOS complexes. This has potential therapeutic implications, since treatments boosting biogenesis or influencing mitophagy could be beneficial for IBD treatment. Additionally, substances specifically stimulating complex I activity should be tested in IBD treatment.


2022 ◽  
Author(s):  
Yuhang Dong ◽  
Xiaoxiao Zhang ◽  
Mengyang Li ◽  
Qikang Ying ◽  
Yunan Feng ◽  
...  

Oxidative phosphorylation (OXPHOS) is a vital pathway provides ATP for intracellular activities. Here, we found that Hantaan virus (HTNV) exploited mitochondria OXPHOS to assist its replication in host cells and Protein Kinase B/AKT played a major function in this process. Inhibiting AKT activation by BEZ treatment can inhibit HTNV replication and prevent the increase of OXPHOS level caused by HTNV infection. We also found that HTNV infection can promote AKT translocation to mitochondria, where AKT phosphorylates Polynucleotide phosphorylase (PNPT). Taken together, our research demonstrates that HTNV replication exploits OXPHOS in host cells and it increases OXPHOS function by AKT-PNPT interaction in mitochondria.


Author(s):  
Yafei Rao ◽  
Xiaoyan Gai ◽  
Yanqing Le ◽  
Jing Xiong ◽  
Yujia Liu ◽  
...  

AimSmoker COPD patients with chest radiological signs of prior tuberculosis (TB) showed more severe lung damage, but the mechanisms remain unclear. Emerging evidence has implicated NK cells in the pathogenesis of both COPD and TB. The purpose of this study was to delineate the profile and cytokine production of NK-cell subpopulations and their immunometabolic changes after exposure to both cigarette smoke (CS) and Mycobacterium tuberculosis(MTB).MethodsWe profiled NK-cell subpopulations in terms of percentage and cytokine production by flow cytometry in smoker patients with pulmonary TB (PTB). In an in vitro coexposure model, we investigated proinflammatory cytokine production, glycolytic influx, and oxidative phosphorylation of NK cells under CS extract (CSE) and PPD costimulation.ResultsPeripheral blood NK cells in smoker patients with active PTB (CS+PTB group) showed altered proportion of subpopulations and excessive proinflammatory cytokine expressions. In vitro, CSE- and PPD-coexposed NK-92 cells displayed enhanced proinflammatory cytokine production, concurrent with decreased glycolytic influx and oxidative phosphorylation.ConclusionSmoker patients with active PTB showed enhanced proinflammatory cytokine expression within altered NK cell subpopulations. CSE and PPD coexposure induced heightened cytokine production concurrent with impaired cell metabolism in NK cells. These novel data suggest a potential role of NK cells in the pathogenesis of lung injury in subjects with coexposure to CS and TB.


Author(s):  
Ding Xue ◽  
Yibin Xu ◽  
Armita Kyani ◽  
Joyeeta Roy ◽  
Lipeng Dai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document