scholarly journals Glucosamine-sensitive and -insensitive detritiation of [2-3H]glucose in isolated rat hepatocytes: a study of the contributions of glucokinase and glucose-6-phosphatase

1995 ◽  
Vol 308 (1) ◽  
pp. 23-29 ◽  
Author(s):  
E Van Schaftigen

Glucosamine, a potent inhibitor of glucokinase (hexokinase IV or D), was used to estimate the contribution of this enzyme to glucose phosphorylation in freshly isolated rat hepatocytes and its sensitivity to fructose 6-phosphate in situ. Experiments with radiolabelled glucosamine indicated that this amino sugar, at concentrations of 5 or 40 mM, readily penetrated hepatocytes to reach in 1 min a total (i.e., glucosamine+metabolites) intracellular concentration equal to 0.8-1.2-fold its extracellular concentration. In marked contrast, N-acetylglucosamine barely penetrated the cells. The detritiation of [2-3H]glucose, used to estimate glucose phosphorylation in intact cells, was inhibited by glucosamine much more potently than by N-acetylglucosamine, half-maximal effects being reached at about 2.5 and 30 mM respectively. Extrapolation of the data indicated that about 12% of the detritiation was resistant to glucosamine. Dihydroxyacetone (10 mM), lactate (10 mM) + pyruvate (1 mM), and glucagon (1 microM) increased up to 8-fold the concentration of hexose 6-phosphates (glucose 6-phosphate+fructose 6-phosphate) and, against expectations, modestly decreased the detritiation rate measured in the absence of glucosamine. In the presence of 40 mM glucosamine, these agents increased the detritiation rate, which then positively correlated with the concentration of hexose 6-phosphates. This hexose 6-phosphates-dependent detritiation was sensitive to inhibition by vanadate, and was also catalysed by gel-filtered cell-free extracts, as well as by liver microsomes in the presence of phosphoglucoisomerase; it can be explained by an exchange reaction catalysed by glucose-6-phosphatase. When this exchange reaction is taken into account, it appears that the rate of glucose detritiation attributable to glucokinase decreases when the concentration of hexose 6-phosphates increases. This is in agreement with the known effect of fructose 6-phosphate to potentiate the inhibition of glucokinase by its regulatory protein.

1987 ◽  
Vol 241 (3) ◽  
pp. 729-735 ◽  
Author(s):  
J M Staddon ◽  
R G Hansford

Phenylephrine, vasopressin and glucagon each increased the amount of active (dephospho) pyruvate dehydrogenase (PDHa) in isolated rat hepatocytes. Treatment with 4 beta-phorbol 12-myristate 13-acetate (PMA) opposed the increase in PDHa caused by both phenylephrine and glucagon, but had no effect on the response to vasopressin: PMA alone had no effect on PDHa. As PMA is known to prevent the phenylephrine-induced increase in cytoplasmic free Ca2+ concentration ([Ca2+]c) and to diminish the increase [Ca2+]c caused by glucagon, while having no effect on the ability of vasopressin to increase [Ca2+]c, these data are consistent with the notion that in intact cells an increase in [Ca2+]c results in an increase in the mitochondrial free Ca2+ concentration, which in turn leads to the activation of PDH. In the presence of 2.5 mM-Ca2+, glucagon caused an increase in NAD(P)H fluorescence in hepatocytes. This increase is taken to reflect an enhanced activity of mitochondrial dehydrogenases. PMA alone had no effect on NAD(P)H fluorescence; it did, however, compromise the increase produced by glucagon. When the extracellular free [Ca2+] was decreased to 0.2 microM, glucagon could still increase NAD(P)H fluorescence. Vasopressin also increased fluorescence under these conditions; however, if vasopressin was added after glucagon, no further increase in fluorescence was observed. Treatment of the cells with PMA resulted in a smaller increase in NAD(P)H fluorescence on addition of glucagon: the subsequent addition of vasopressin now caused a further increase in fluorescence. Changes in [Ca2+]c corresponding to the changes in NAD(P)H fluorescence were observed, again supporting the idea that [Ca2+]c indirectly regulates intramitochondrial dehydrogenase activity in intact cells. PMA alone had no effect on pyruvate kinase activity, and the phorbol ester did not prevent the inactivation caused by glucagon. The latter emphasizes the different mechanisms by which the hormone influences mitochondrial and cytoplasmic metabolism.


1982 ◽  
Vol 208 (2) ◽  
pp. 453-457 ◽  
Author(s):  
S Alemany ◽  
I Varela ◽  
J M Mato

The addition of 1 microM-vasopressin or -angiotensin to isolated rat hepatocytes induced a fast transient inhibition of the rate of incorporation of [Me-3H]choline into phosphatidylcholine. The cationophore A23187 induced a similar inhibition of phosphatidylcholine synthesis. The addition of micromolar Ca2+ to rat liver microsomes inhibited the activity of CDP-choline: 1,2-diacylglycerol cholinephosphotransferase. This inhibition is due a decrease in the Vmax. of the enzyme without affecting the Km for CDP-choline. It is concluded that Ca2+ regulates phosphatidylcholine synthesis in rat liver.


1997 ◽  
Vol 10 (4) ◽  
pp. 450-456 ◽  
Author(s):  
Joe L. Nieusma ◽  
David J. Claffey ◽  
Chris Maniglier-Poulet ◽  
Tomasz Imiolczyk ◽  
David Ross ◽  
...  

2001 ◽  
Vol 356 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Frank PETRAT ◽  
Herbert de GROOT ◽  
Ursula RAUEN

The pool of cellular chelatable iron (‘free iron’, ‘low-molecular-weight iron’, the ‘labile iron pool’) is usually considered to reside mainly within the cytosol. For the present study we adapted our previously established Phen Green method, based on quantitative laser scanning microscopy, to examine the subcellular distribution of chelatable iron in single intact cells for the first time. These measurements, performed in isolated rat hepatocytes and rat liver endothelial cells, showed considerable concentrations of chelatable iron, not only in the cytosol but also in several other subcellular compartments. In isolated rat hepatocytes we determined a chelatable iron concentration of 5.8±2.6μM within the cytosol and of at least 4.8μM in mitochondria. The hepatocellular nucleus contained chelatable iron at the surprisingly high concentration of 6.6±2.9μM. In rat liver endothelial cells, the concentration of chelatable iron within all these compartments was even higher (cytosol, 7.3±2.6μM; nucleus, 11.8±3.9μM; mitochondria, 9.2±2.7μM); in addition, chelatable iron (approx. 16±4μM) was detected in a small subpopulation of the endosomal/lysosomal apparatus. Hence there is an uneven distribution of subcellular chelatable iron, a fact that is important to consider for (patho)physiological processes and that also has implications for the use of iron chelators to inhibit oxidative stress.


1984 ◽  
Vol 247 (1) ◽  
pp. C83-C89 ◽  
Author(s):  
D. P. Jones

Isolated rat hepatocytes were treated with digitonin to selectively disrupt the plasma membrane and allow study of the O2 dependence of mitochondria within the cell cytoskeleton, but without cytosol. Half-maximal oxidation of cytochrome c occurred at 2.0 microM O2 in treated cells incubated under State 3 conditions, whereas in intact cells it was 6.0 microM and in isolated mitochondria (State 3) 0.69 microM. the intermediate value for treated cells indicates that both the geometry of mitochondrial packing and the intracellular diffusion coefficient are important in determining intracellular mitochondrial O2 dependence. Analysis of intracellular diffusion, assuming that the mitochondrial clustering increases the effective mitochondrial radius, indicates that an intracellular diffusion coefficient of between 10(-6) and 4 X 10(-6) cm2 . s-1 and an effective mitochondrial radius of approximately 2 micron would account for the observed intracellular O2 dependence of mitochondrial function.


1986 ◽  
Vol 35 (22) ◽  
pp. 3955-3960 ◽  
Author(s):  
Emanuele Albano ◽  
Kevin H. Cheeseman ◽  
Aldo Tomasi ◽  
Rita Carini ◽  
Mario U. Dianzani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document