scholarly journals Sphingosylphosphocholine modulates the ryanodine receptor/calcium-release channel of cardiac sarcoplasmic reticulum membranes

1997 ◽  
Vol 322 (1) ◽  
pp. 327-333 ◽  
Author(s):  
Romeo BETTO ◽  
Alessandra TERESI ◽  
Federica TURCATO ◽  
Giovanni SALVIATI ◽  
Roger A. SABBADINI ◽  
...  

Sphingosylphosphocholine (SPC) modulates Ca2+ release from isolated cardiac sarcoplasmic reticulum membranes; 50 ƁM SPC induces the release of 70Ő80% of the accumulated calcium. SPC releases calcium from cardiac sarcoplasmic reticulum through the ryanodine receptor, since the release is inhibited by the ryanodine receptor channel antagonists ryanodine, Ruthenium Red and sphingosine. In intact cardiac myocytes, even in the absence of extracellular calcium, SPC causes a rise in diastolic Ca2+, which is greatly reduced when the sarcoplasmic reticulum is depleted of Ca2+ by prior thapsigargin treatment. SPC action on the ryanodine receptor is Ca2+-dependent. SPC shifts to the left the Ca2+-dependence of [3H]ryanodine binding, but only at high pCa values, suggesting that SPC might increase the sensitivity to calcium of the Ca2+-induced Ca2+-release mechanism. At high calcium concentrations (pCa 4.0 or lower), where [3H]ryanodine binding is maximally stimulated, no effect of SPC is observed. We conclude that SPC releases calcium from cardiac sarcoplasmic reticulum membranes by activating the ryanodine receptor and possibly another intracellular Ca2+-release channel, the sphingolipid Ca2+-release-mediating protein of endoplasmic reticulum (SCaMPER) [Mao, Kim, Almenoff, Rudner, Kearney and Kindman (1996) Proc. Natl. Acad. Sci. U.S.A 93, 1993Ő1996], which we have identified for the first time in cardiac tissue.

1988 ◽  
Vol 92 (1) ◽  
pp. 1-26 ◽  
Author(s):  
J S Smith ◽  
T Imagawa ◽  
J Ma ◽  
M Fill ◽  
K P Campbell ◽  
...  

The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS-solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we show that the purified receptor forms cationic channels selective for divalent ions. Ryanodine receptor channels were identical to the Ca-release channels described in native sarcoplasmic reticulum using the same techniques. In the present work, four criteria were used to establish this identity: (a) activation of channels by micromolar Ca and millimolar ATP and inhibition by micromolar ruthenium red, (b) a main channel conductance of 110 +/- 10 pS in 54 mM trans Ca, (c) a long-term open state of lower unitary conductance induced by ryanodine concentrations as low as 20 nM, and (d) a permeability ratio PCa/PTris approximately equal to 14. In addition, we show that the purified ryanodine receptor channel displays a saturable conductance in both monovalent and divalent cation solutions (gamma max for K and Ca = 1 nS and 172 pS, respectively). In the absence of Ca, channels had a broad selectivity for monovalent cations, but in the presence of Ca, they were selectively permeable to Ca against K by a permeability ratio PCa/PK approximately equal to 6. Receptor channels displayed several equivalent conductance levels, which suggest an oligomeric pore structure. We conclude that the 450,000-dalton polypeptide ryanodine receptor is the Ca-release channel of the sarcoplasmic reticulum and is the target site of ruthenium red and ryanodine.


Sign in / Sign up

Export Citation Format

Share Document