Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase

2002 ◽  
Vol 30 (6) ◽  
pp. 1064-1070 ◽  
Author(s):  
D. G. Hardie ◽  
D. A. Pan

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy charge and a ‘metabolic master switch’. When activated by ATP depletion, it switches off ATP-consuming processes, while switching on catabolic pathways that generate ATP. AMPK exists as heterotrimeric complexes comprising catalytic α subunits and regulatory β and γ subunits, each of which occurs as multiple isoforms. Rising AMP and falling ATP, brought about by various types of cellular stress (including exercise in skeletal muscle), stimulate the system in an ultrasensitive manner. Acetyl-CoA carboxylase (ACC) exists in mammals as two isoforms, termed ACC-1 and ACC-2 (also known as ACC-α and ACC-β). AMPK phosphorylates and inactivates both isoforms at the equivalent site. Knockout mice, and other approaches, suggest that the malonyl-CoA produced by ACC-2 is exclusively involved in regulation of fatty acid oxidation, whereas that produced by ACC-1 is utilized in fatty acid synthesis. Activation of AMPK by cellular stress or exercise therefore switches on fatty acid oxidation (via phosphorylation of ACC-2) while switching off fatty acid synthesis (via phosphorylation of ACC-1). The Drosophila melanogaster genome contains single genes encoding homologues of the α, β and γ subunits of AMPK (DmAMPK) and of ACC (DmACC). Studies in a Drosophila embryonal cell line show that DmAMPK is activated by stresses that cause ATP depletion (oligomycin, hypoxia or glucose deprivation) and that this is associated with phosphorylation of the site on DmACC equivalent to the AMPK sites on mammalian ACC-1 and ACC-2. This is abolished when expression of DmAMPK is ablated using an RNA interference approach, proving that DmAMPK is necessary for phosphorylation of DmACC in response to ATP depletion.

Diabetes ◽  
2006 ◽  
Vol 55 (10) ◽  
pp. 2688-2697 ◽  
Author(s):  
A. L. Carey ◽  
G. R. Steinberg ◽  
S. L. Macaulay ◽  
W. G. Thomas ◽  
A. G. Holmes ◽  
...  

Nature ◽  
2002 ◽  
Vol 415 (6869) ◽  
pp. 339-343 ◽  
Author(s):  
Yasuhiko Minokoshi ◽  
Young-Bum Kim ◽  
Odile D. Peroni ◽  
Lee G. D. Fryer ◽  
Corinna Müller ◽  
...  

2005 ◽  
Vol 98 (4) ◽  
pp. 1221-1227 ◽  
Author(s):  
D. S. Rubink ◽  
W. W. Winder

AMP-activated protein kinase (AMPK) has previously been demonstrated to phosphorylate and inactivate skeletal muscle acetyl-CoA carboxylase (ACC), the enzyme responsible for synthesis of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 and fatty acid oxidation. Contraction-induced activation of AMPK with subsequent phosphorylation/inactivation of ACC has been postulated to be responsible in part for the increase in fatty acid oxidation that occurs in muscle during exercise. These studies were designed to answer the question: Does phosphorylation of ACC by AMPK make palmitoyl-CoA a more effective inhibitor of ACC? Purified rat muscle ACC was subjected to phosphorylation by AMPK. Activity was determined on nonphosphorylated and phosphorylated ACC preparations at acetyl-CoA concentrations ranging from 2 to 500 μM and at palmitoyl-CoA concentrations ranging from 0 to 100 μM. Phosphorylation resulted in a significant decline in the substrate saturation curve at all palmitoyl-CoA concentrations. The inhibitor constant for palmitoyl-CoA inhibition of ACC was reduced from 1.7 ± 0.25 to 0.85 ± 0.13 μM as a consequence of phosphorylation. At 0.5 mM citrate, ACC activity was reduced to 13% of control values in response to the combination of phosphorylation and 10 μM palmitoyl-CoA. Skeletal muscle ACC is more potently inhibited by palmitoyl-CoA after having been phosphorylated by AMPK. This may contribute to low-muscle malonyl-CoA values and increasing fatty acid oxidation rates during long-term exercise when plasma fatty acid concentrations are elevated.


2010 ◽  
Vol 299 (4) ◽  
pp. H1135-H1145 ◽  
Author(s):  
Jagdip S. Jaswal ◽  
Chad R. Lund ◽  
Wendy Keung ◽  
Donna L. Beker ◽  
Ivan M. Rebeyka ◽  
...  

Isoproterenol increases phosphorylation of LKB, 5′-AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase (ACC), enzymes involved in regulating fatty acid oxidation. However, inotropic stimulation selectively increases glucose oxidation in adult hearts. In the neonatal heart, fatty acid oxidation becomes a major energy source, while glucose oxidation remains low. This study tested the hypothesis that increased energy demand imposed by isoproterenol originates from fatty acid oxidation, secondary to increased LKB, AMPK, and ACC phosphorylation. Isolated working hearts from 7-day-old rabbits were perfused with Krebs solution (0.4 mM palmitate, 11 mM glucose, 0.5 mM lactate, and 100 mU/l insulin) with or without isoproterenol (300 nM). Isoproterenol increased myocardial O2 consumption (in J·g dry wt−1·min−1; 11.0 ± 1.4, n = 8 vs. 7.5 ± 0.8, n = 6, P < 0.05), and the phosphorylation of LKB (in arbitrary density units; 0.87 ± 0.09, n = 6 vs. 0.59 ± 0.08, n = 6, P < 0.05), AMPK (0.82 ± 0.08, n = 6 vs. 0.51 ± 0.06, n = 6, P < 0.05), and ACC-β (1.47 ± 0.14, n = 6 vs. 0.97 ± 0.07, n = 6, P < 0.05), with a concomitant decrease in malonyl-CoA levels (in nmol/g dry wt; 0.9 ± 0.9, n = 8 vs. 7.5 ± 1.3, n = 8, P < 0.05) and increase in palmitate oxidation (in nmol·g dry wt−1·min−1; 272 ± 45, n = 8 vs. 114 ± 9, n = 6, P < 0.05). Glucose and lactate oxidation were increased (in nmol·g dry wt−1·min−1; 253 ± 75, n = 8 vs. 63 ± 15, n = 9, P < 0.05 and 246 ± 43, n = 8 vs. 82 ± 11, n = 6, P < 0.05, respectively), independent of alterations in pyruvate dehydrogenase phosphorylation, but occurred secondary to a decrease in acetyl-CoA content and acetyl-CoA-to-free CoA ratio. As acetyl-CoA levels decrease in response to isoproterenol, despite an acceleration of the rates of palmitate and carbohydrate oxidation, these data suggest net rates of acetyl-CoA utilization exceed the net rates of acetyl-CoA generation.


1997 ◽  
Vol 273 (6) ◽  
pp. E1107-E1112 ◽  
Author(s):  
G. F. Merrill ◽  
E. J. Kurth ◽  
D. G. Hardie ◽  
W. W. Winder

5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) has previously been reported to be taken up into cells and phosphorylated to form ZMP, an analog of 5′-AMP. This study was designed to determine whether AICAR can activate AMP-activated protein kinase (AMPK) in skeletal muscle with consequent phosphorylation of acetyl-CoA carboxylase (ACC), decrease in malonyl-CoA, and increase in fatty acid oxidation. Rat hindlimbs were perfused with Krebs-Henseleit bicarbonate containing 4% bovine serum albumin, washed bovine red blood cells, 200 μU/ml insulin, and 10 mM glucose with or without AICAR (0.5–2.0 mM). Perfusion with medium containing AICAR was found to activate AMPK in skeletal muscle, inactivate ACC, and decrease malonyl-CoA. Hindlimbs perfused with 2 mM AICAR for 45 min exhibited a 2.8-fold increase in fatty acid oxidation and a significant increase in glucose uptake. No difference was observed in oxygen uptake in AICAR vs. control hindlimb. These results provide evidence that decreases in muscle content of malonyl-CoA can increase the rate of fatty acid oxidation.


2002 ◽  
Vol 30 (6) ◽  
pp. 1059-1064 ◽  
Author(s):  
M. R. Munday

Acetyl-CoA carboxylase (ACC) plays a critical role in the regulation of fatty acid metabolism and its two isoforms, ACCα and ACCβ, appear to have distinct functions in the control of fatty acid synthesis and fatty acid oxidation, respectively. They are regulated by similar short-term mechanisms of allosteric activation by citrate, and reversible phosphorylation and inactivation, and there is clearly interaction between these mechanisms. AMP-activated protein kinase is the important physiological ACC kinase for both isoforms and yet there is a potential physiological role for cAMP-dependent protein kinase in the hormonally mediated inactivation of ACCα, and phosphorylation of ACCβ in its unique N-terminus.


Sign in / Sign up

Export Citation Format

Share Document