Interactions of the renin-angiotensin system and neuronal nitric oxide synthase in regulation of cyclooxygenase-2 in the macula densa

2000 ◽  
Vol 168 (1) ◽  
pp. 47-51 ◽  
Author(s):  
Harris ◽  
Cheng ◽  
Wang ◽  
Zhang ◽  
McKanna
2007 ◽  
Vol 20 (7) ◽  
pp. 764-770 ◽  
Author(s):  
L HENSKENS ◽  
A KROON ◽  
Y VANDERSCHOUW ◽  
P SCHIFFERS ◽  
D GROBBEE ◽  
...  

Hypertension ◽  
1997 ◽  
Vol 30 (3) ◽  
pp. 409-415 ◽  
Author(s):  
Andrea Lippoldt ◽  
Volkmar Gross ◽  
Kerstin Schneider ◽  
Anita Hansson ◽  
Sophie Nadaud ◽  
...  

2007 ◽  
Vol 86 (6) ◽  
pp. 678-682 ◽  
Author(s):  
Chiara Benedetto ◽  
Luca Marozio ◽  
Giovannino Ciccone ◽  
Giuseppina Chieppa ◽  
Marco Quaglia ◽  
...  

1998 ◽  
Vol 274 (3) ◽  
pp. F516-F524 ◽  
Author(s):  
Atsuhiro Ichihara ◽  
Edward W. Inscho ◽  
John D. Imig ◽  
L. Gabriel Navar

This study was performed to determine the influence of neuronal nitric oxide synthase (nNOS) on renal arteriolar tone under conditions of normal, interrupted, and increased volume delivery to the macula densa segment and on the microvascular responses to angiotensin II (ANG II). Experiments were performed in vitro on afferent (21.2 ± 0.2 μm) and efferent (18.5 ± 0.2 μm) arterioles of kidneys harvested from male Sprague-Dawley rats, using the blood-perfused juxtamedullary nephron technique. Superfusion with the specific nNOS inhibitor, S-methyl-l-thiocitrulline (l-SMTC), decreased afferent and efferent arteriolar diameters, and these decreases in arteriolar diameters were prevented by interruption of distal volume delivery by papillectomy. When 10 mM acetazolamide was added to the blood perfusate to increase volume delivery to the macula densa segment, afferent arteriolar vasoconstrictor responses tol-SMTC were enhanced, but this effect was again completely prevented after papillectomy. In contrast, the arteriolar diameter responses to the nonselective NOS inhibitor, N ω-nitro-l-arginine (l-NNA) were only attenuated by papillectomy.l-SMTC (10 μM) enhanced the efferent arteriolar vasoconstrictor response to ANG II but did not alter the afferent arteriolar vasoconstrictor responsiveness to ANG II. In contrast, l-NNA (100 μM) enhanced both afferent and efferent arteriolar vasoconstrictor responses to ANG II. These results indicate that the modulating influence of nNOS on afferent arteriolar tone of juxtamedullary nephrons is dependent on distal tubular fluid flow. Furthermore, nNOS exerts a differential modulatory action on the juxtamedullary microvasculature by enhancing efferent, but not afferent, arteriolar responsiveness to ANG II.


2004 ◽  
Vol 53 (4) ◽  
pp. 387-390 ◽  
Author(s):  
Akira YABUKI ◽  
Mitsuharu MATSUMOTO ◽  
Ryozo KAMIMURA ◽  
Kazuyuki TANIGUCHI ◽  
Syusaku SUZUKI

2009 ◽  
Vol 46 (3) ◽  
pp. 188-198 ◽  
Author(s):  
Nathalie Krattinger ◽  
Florian Alonso ◽  
Alessandro Capponi ◽  
Lucia Mazzolai ◽  
Pascal Nicod ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document