Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field

2003 ◽  
Vol 12 (3) ◽  
pp. 765-775 ◽  
Author(s):  
C. Zwahlen ◽  
A. Hilbeck ◽  
P. Gugerli ◽  
W. Nentwig
2014 ◽  
Vol 229 ◽  
pp. S207 ◽  
Author(s):  
Monica Andreassen ◽  
Thomas Bøhn ◽  
Odd-Gunnar Wikmark ◽  
Johnnie Van den Berg ◽  
Martinus Løvik ◽  
...  

2019 ◽  
Vol 11 (2) ◽  
pp. 201 ◽  
Author(s):  
Maria Freire de Sousa ◽  
Marcos Gino Fernandes ◽  
Anderson José da Silva Guimarães

Non-target arthropods may be affected by toxins derived from Bacillus thuringiensis (Bt) expressed in transgenic maize. The objective of this study was to evaluate the possible impacts of Bt maize on the diversity and the composition of non-target arthropod species by analyzing one field cultivated with conventional maize (no expressing transgenic protein) and three fields cultivated with transgenic maize (expressing Bt proteins). In each field was sampled 50 entirely plants for the number of arthropod specimens and registred the degree of injury caused by the chewing insects. A total of 2.525 specimens of arthropods, comprising 29 species from 25 families, were recorded on 3.000 sampled plants. The most diverse family belonged to the order Hemiptera. Based on Shannon and Simpson indexes, the Bt-transgenic cultivar EXP3320YG had lower level of non-target arthropod diversity than other cultivars. From this study, it is clear that the diversity of non-target arthropods on maize crop is negatively affected by Cry1Ab protein, while the Cry1A105+Cry2Ab2+Cry1F proteins, and Cry1A105+Cry2Ab2+Cry3Bb1 proteins do not have any effect on arthropod species diversity and composition.


2016 ◽  
Vol 9 (3) ◽  
pp. 475-486 ◽  
Author(s):  
J. Díaz-Gómez ◽  
S. Marín ◽  
T. Capell ◽  
V. Sanchis ◽  
A.J. Ramos

In many developing countries, maize is both a staple food crop and a widely-used animal feed. However, adventitious colonisation or damage caused by insect pests allows fungi to penetrate the vegetative parts of the plant and the kernels, the latter resulting in mycotoxin contamination. Maize seeds contaminated with fumonisins and other mycotoxins pose a serious threat to both humans and livestock. However, numerous studies have reported a significant reduction in pest damage, disease symptoms and fumonisin levels in maize hybrids expressing the Bacillus thuringiensis (Bt) gene cry1Ab, particularly in areas where the European corn borer is prevalent. When other pests are also present, the cry1Ab gene alone offers insufficient protection, and combinations of insecticidal genes are required to reduce damage to plants caused by insects. The combination of Cry1Ab protein with other Cry proteins (such as Cry1F) or Vip proteins has reduced the incidence of pests and, indirectly, mycotoxin levels. Maize hybrids expressing multiple Bt genes, such as SmartStax®, are less susceptible to damage by insects, but mycotoxin levels are not routinely and consistently compared in these crops. Bt maize has a greater economic impact on Fusarium toxins than aflatoxins. The main factors that determine the effectiveness of Bt hybrids are the type of pest and the environmental conditions, but the different fungal infection pathways must also be considered. An alternative strategy to reduce mycotoxin levels in crops is the development of transgenic plants expressing genes that protect against fungal infection or reduce mycotoxin levels by in situ detoxification. In this review article, we summarise what is known about the relationship between the cultivation of Bt maize hybrids and contamination levels with different types of mycotoxins.


Sign in / Sign up

Export Citation Format

Share Document