The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes

1999 ◽  
Vol 20 (3) ◽  
pp. 265-277 ◽  
Author(s):  
Walter Gassmann ◽  
Matthew E. Hinsch ◽  
Brian J. Staskawicz
Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1961-1977
Author(s):  
Michelle A Graham ◽  
Laura Fredrick Marek ◽  
Randy C Shoemaker

Abstract PCR amplification was previously used to identify a cluster of resistance gene analogues (RGAs) on soybean linkage group J. Resistance to powdery mildew (Rmd-c), Phytophthora stem and root rot (Rps2), and an ineffective nodulation gene (Rj2) map within this cluster. BAC fingerprinting and RGA-specific primers were used to develop a contig of BAC clones spanning this region in cultivar “Williams 82” [rps2, Rmd (adult onset), rj2]. Two cDNAs with homology to the TIR/NBD/LRR family of R-genes have also been mapped to opposite ends of a BAC in the contig Gm_Isb001_091F11 (BAC 91F11). Sequence analyses of BAC 91F11 identified 16 different resistance-like gene (RLG) sequences with homology to the TIR/NBD/LRR family of disease resistance genes. Four of these RLGs represent two potentially novel classes of disease resistance genes: TIR/NBD domains fused inframe to a putative defense-related protein (NtPRp27-like) and TIR domains fused inframe to soybean calmodulin Ca2+-binding domains. RT-PCR analyses using gene-specific primers allowed us to monitor the expression of individual genes in different tissues and developmental stages. Three genes appeared to be constitutively expressed, while three were differentially expressed. Analyses of the R-genes within this BAC suggest that R-gene evolution in soybean is a complex and dynamic process.


Genome ◽  
2004 ◽  
Vol 47 (4) ◽  
pp. 650-659 ◽  
Author(s):  
M W.F Yaish ◽  
L E Sáenz de Miera ◽  
M Pérez de la Vega

Most known plant disease-resistance genes (R genes) include in their encoded products domains such as a nucleotide-binding site (NBS) or leucine-rich repeats (LRRs). Sequences with unknown function, but encoding these conserved domains, have been defined as resistance gene analogues (RGAs). The conserved motifs within plant NBS domains make it possible to use degenerate primers and PCR to isolate RGAs. We used degenerate primers deduced from conserved motifs in the NBS domain of NBS-LRR resistance proteins to amplify genomic sequences from Lens species. Fragments from approximately 500-850 bp were obtained. The nucleotide sequence analysis of these fragments revealed 32 different RGA sequences in Lens species with a high similarity (up to 91%) to RGAs from other plants. The predicted amino acid sequences showed that lentil sequences contain all the conserved motifs (P-loop, kinase-2, kinase-3a, GLPL, and MHD) present in the majority of other known plant NBS–LRR resistance genes. Phylogenetic analyses grouped the Lens NBS sequences with the Toll and interleukin-1 receptor (TIR) subclass of NBS–LRR genes, as well as with RGA sequences isolated from other legume species. Using inverse PCR on one putative RGA of lentil, we were able to amplify the flanking regions of this sequence, which contained features found in R proteins.Key words: disease resistance genes, comparative analysis, lentils, TIR, LRR.


Genome ◽  
2000 ◽  
Vol 43 (1) ◽  
pp. 86-93 ◽  
Author(s):  
Michelle A Graham ◽  
Laura Fredrick Marek ◽  
David Lohnes ◽  
Perry Cregan ◽  
Randy C Shoemaker

Sequence analysis of cloned plant disease-resistance genes reveals a number of conserved domains. Researchers have used these domains to amplify analogous sequences, resistance gene analogs (RGAs), from soybean and other crops. Many of these RGAs map in close proximity to known resistance genes. While this technique is useful in identifying potential disease resistance loci, identifying the functional resistance gene from a cluster of homologs requires sequence information from outside of these conserved domains. To study RGA expression and to determine the extent of their similarity to other plant resistance genes, two soybean cDNA libraries (root and epicotyl) were screened by hybridization with RGA class-specific probes. cDNAs hybridizing to RGA probes were detected in each library. Two types of cDNAs were identified. One type was full-length and contained several disease-resistance gene (R-gene) signatures. The other type contained several deletions within these signatures. Sequence analyses of the cDNA clones placed them in the Toll-Interleukin-1 receptor, nucleotide binding domain, and leucine-rich repeat family of disease-resistance genes. Using clone-specific primers from within the 3' end of the LRRs, we were able to map two cDNA clones (LM6 and MG13) to a BAC contig that is known to span a cluster of disease-resistance genes. Key words: expression, R-genes, contig, RGAs, soybean.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 832
Author(s):  
Brittney M. Caruana ◽  
Brendan C. Rodoni ◽  
Fiona Constable ◽  
Anthony T. Slater ◽  
Noel O. I. Cogan

Potato is an important food crop worldwide and is grown in a large number of countries. As such, the crop is under disease pressures and the need for selecting disease resistance genes during breeding programs is essential. Of particular importance within Australia and other parts of the world is the potyvirus, Potato virus Y (PVY). In this paper, three commonly used PVY resistance markers, M45, RYSC3 and M6, were evaluated using existing genomic resources and phenotypic data from the Australian potato breeding program to identify a region where the PVY resistance gene, Ryadg may reside. A region of Chromosome XI was investigated, and a cluster of disease resistance genes was identified that the resistance gene Ryadg is suspected to reside within. Protein characterization was also performed on the putative resistant gene. A specific variant that had complete association with the resistance gene was identified and a single nucleotide polymorphism (SNP) assay was designed to avoid dissociation of marker and gene in future breeding programs. This SNP marker (SNP37279) was validated as a Kompetitive Allele-specific PCR (KASP) genotyping assay and was found to perform more accurately than all previously used markers for detecting Ryadg.


Sign in / Sign up

Export Citation Format

Share Document