disease resistance
Recently Published Documents


TOTAL DOCUMENTS

5440
(FIVE YEARS 1332)

H-INDEX

167
(FIVE YEARS 18)

Aquaculture ◽  
2022 ◽  
Vol 549 ◽  
pp. 737794
Author(s):  
Esti Handayani Hardi ◽  
Rudy Agung Nugroho ◽  
Rita Rostika ◽  
Choirum M. Mardliyaha ◽  
Komsanah Sukarti ◽  
...  

2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Xuechun Bai ◽  
Graham S. Plastow

AbstractDisease resilience, defined as an animal’s ability to maintain productive performance in the face of infection, provides opportunities to manage the polymicrobial challenge common in pig production. Disease resilience can deliver a number of benefits, including more sustainable production as well as improved animal health and the potential for reduced antimicrobial use. However, little progress has been made to date in the application of disease resilience in breeding programs due to a number of factors, including (1) confusion around definitions of disease resilience and its component traits disease resistance and tolerance, and (2) the difficulty in characterizing such a complex trait consisting of multiple biological functions and dynamic elements of rates of response and recovery from infection. Accordingly, this review refines the definitions of disease resistance, tolerance, and resilience based on previous studies to help improve the understanding and application of these breeding goals and traits under different scenarios. We also describe and summarize results from a “natural disease challenge model” designed to provide inputs for selection of disease resilience. The next steps for managing polymicrobial challenges faced by the pig industry will include the development of large-scale multi-omics data, new phenotyping technologies, and mathematical and statistical methods adapted to these data. Genome editing to produce pigs resistant to major diseases may complement selection for disease resilience along with continued efforts in the more traditional areas of biosecurity, vaccination and treatment. Altogether genomic approaches provide exciting opportunities for the pig industry to overcome the challenges provided by hard-to-manage diseases as well as new environmental challenges associated with climate change.


Fishes ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 18
Author(s):  
Yan Xu ◽  
Yiqun Li ◽  
Mingyang Xue ◽  
Zidong Xiao ◽  
Yuding Fan ◽  
...  

Diseases of crucian carp (Carassius auratus) are closely related to intestinal parameters. Enterococcus faecalis has strong colonization ability in the intestinal tract, and produces natural antibiotics, bacteriocin, and other bacteriostatic substances, which can effectively inhibit some pathogenic bacteria and improve the intestinal microenvironment. This study aimed to assess the effects of E. faecalis YFI-G720 which was isolated from the intestinal of crucian carp on the growth, immunity, intestinal health, and disease resistance of crucian carp. Fish (48.16 ± 0.55 g) were fed four diets, commercial diet or diet containing E. faecalis at 105 CFU/g (EF1), 106 CFU/g (EF2), or 107 CFU/g (EF3) for 28 days. The results showed that supplementation of E. faecalis significantly improved the weight gain ratio (WGR) and the specific growth rate (SGR) compared with control group (p < 0.05). Intestinal mucosal epithelial cells in EF2 were intact and normal, but there was obvious vacuolation in CG. Compared with CG, serum C3 and IgM in EF2 were significantly increased at the end of the experiment (p < 0.05), and serum alkaline phosphatase was significantly higher in all experimental groups (p < 0.05). Among studied immune-related genes, expression was detected by qPCR, C3, IgM, and IL-1βwere upregulated in all experimental groups to varying degrees from 14 days, with highest expression in EF2 at 28 days. Intestinal microbiota structure analyzed through high-throughput sequencing, and the results showed that the relative abundance of Aeromonas and Acinetobacter decreased while Cetobacterium increased in all experimental groups, with the greatest changes in EF2. Challenge tests showed that fish fed E. faecalis were more resistant to Aeromonas veronii (p < 0.05). In conclusion, dietary E. faecalis YFI-G720 at 106 CFU/g can improve the health status, immune parameters, intestinal microbiota composition, and disease resistance of crucian carp.


2022 ◽  
Author(s):  
Yingying Fan ◽  
Ruili Zhang ◽  
Xiaoqin Liu ◽  
Yushan Ma ◽  
Yan Wang ◽  
...  

Abstract BackgroundBlack spot disease, caused by Alternaria altrenata, is one of the most destructive diseases of jujube worldwide. To better understand the resistance mechanisms of jujube to A. altrenata infection to be able to improve disease control and resistance breeding. Two different cultivars, Zizyphus jujuba Mill. var. Jun jujube (susceptible) and Zizyphus jujuba Mill. var. Hui jujube (resistant), were tested. ResultsIn this study, we identified 2235 differentially expressed genes (DEGs) in the disease-resistant cultivar and 4958 in the susceptible cultivar. To better understand these DEGs, the datasets were analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genome (KEGG) database. Most of them were associated with plant phytohormone synthesis and signal transduction, flavonoid synthesis, and glutathione metabolism. The expression of 6 DEGs associated with disease resistance were detected by real time-quantitative polymerase chain reaction (RT-qPCR), consistent with the results of Illumina transcriptome sequencing. Moreover, the expression level of the six DEGs differently in Jun jujube and Hui jujube, verified they are defense response factors. ConclusionsThe present study identified several candidate resistance genes and signal transduction pathways that may contribute to black spot disease resistance in jujube, which will assist the investigation of resistance mechanisms in the response of jujube to A. altrenata infection.


2022 ◽  
Author(s):  
Ling‐Li Zhang ◽  
Yan‐Yan Huang ◽  
Ya‐Ping Zheng ◽  
Xin‐Xian Liu ◽  
Shi‐Xin Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document