Assessment of Skeletal Muscle Ventricle Tissue Blood Flow Using Positron Emission Tomography

2001 ◽  
Vol 25 (4) ◽  
pp. 306-312
Author(s):  
Tajinder P. Singh ◽  
Kevin Greer ◽  
Otto Muzik ◽  
Robert L. Hammond ◽  
Larry W. Stephenson ◽  
...  
2001 ◽  
Vol 25 (4) ◽  
pp. 306-312
Author(s):  
Tajinder P. Singh ◽  
Kevin Greer ◽  
Otto Muzik ◽  
Robert L. Hammond ◽  
Larry W. Stephenson ◽  
...  

Diabetes ◽  
1997 ◽  
Vol 46 (12) ◽  
pp. 2017-2021 ◽  
Author(s):  
Maria Raitakari ◽  
Pirjo Nuutila ◽  
Juhani Knuuti ◽  
Olli T Raitakari ◽  
Hanna Laine ◽  
...  

Diabetes ◽  
1997 ◽  
Vol 46 (12) ◽  
pp. 2017-2021 ◽  
Author(s):  
M. Raitakari ◽  
P. Nuutila ◽  
J. Knuuti ◽  
O. T. Raitakari ◽  
H. Laine ◽  
...  

2002 ◽  
Vol 92 (4) ◽  
pp. 1709-1716 ◽  
Author(s):  
Alan J. Fischman ◽  
Hongbing Hsu ◽  
Edward A. Carter ◽  
Yong M. Yu ◽  
Ronald G. Tompkins ◽  
...  

Positron emission tomography (PET) with H2 15O was used as an in vivo, relatively noninvasive, quantitative method for measuring regional blood flow to hindlimb skeletal muscle of anesthetized dogs. A hydrooccluder positioned on the femoral artery was used to reduce flow, and high-flow states were produced by local infusion of adenosine. Three to four measurements were made in each animal. Approximately 40 mCi of H2 15O were injected intravenously, and serial images and arterial blood samples were acquired over 2.5 min. Data analysis was performed by fitting tissue and arterial blood time-activity curves to a modified, single-compartment Kety model. The model equation was also solved on a pixel-by-pixel basis to yield maps of regional skeletal muscle blood flow. After each PET determination, flow was measured with radioactive microspheres. Results of the PET measurements demonstrated that basal flow to hindlimb skeletal muscle was 3.83 ± 0.36 ml · min−1 · 100 g−1(mean ± SE). This value was in excellent agreement with the microsphere data, 3.73 ± 0.32 ml · min−1 · 100 g−1( P = 0.69, not significant). Adenosine infusion resulted in flows as high as 30 ml · min−1 · 100 g−1, and the PET and microsphere data were highly correlated over the entire range of flows ( r 2 = 0.98, P < 0.0001). We conclude that muscle blood flow can be accurately measured in vivo by PET with H2 15O and that this approach offers promise for application in human studies of muscle metabolism under varying pathophysiological states.


Sign in / Sign up

Export Citation Format

Share Document