scholarly journals Measurement of resting and activated skeletal muscle blood flow by H215O positron emission tomography

1995 ◽  
Vol 76 (11) ◽  
pp. 1039
2002 ◽  
Vol 92 (4) ◽  
pp. 1709-1716 ◽  
Author(s):  
Alan J. Fischman ◽  
Hongbing Hsu ◽  
Edward A. Carter ◽  
Yong M. Yu ◽  
Ronald G. Tompkins ◽  
...  

Positron emission tomography (PET) with H2 15O was used as an in vivo, relatively noninvasive, quantitative method for measuring regional blood flow to hindlimb skeletal muscle of anesthetized dogs. A hydrooccluder positioned on the femoral artery was used to reduce flow, and high-flow states were produced by local infusion of adenosine. Three to four measurements were made in each animal. Approximately 40 mCi of H2 15O were injected intravenously, and serial images and arterial blood samples were acquired over 2.5 min. Data analysis was performed by fitting tissue and arterial blood time-activity curves to a modified, single-compartment Kety model. The model equation was also solved on a pixel-by-pixel basis to yield maps of regional skeletal muscle blood flow. After each PET determination, flow was measured with radioactive microspheres. Results of the PET measurements demonstrated that basal flow to hindlimb skeletal muscle was 3.83 ± 0.36 ml · min−1 · 100 g−1(mean ± SE). This value was in excellent agreement with the microsphere data, 3.73 ± 0.32 ml · min−1 · 100 g−1( P = 0.69, not significant). Adenosine infusion resulted in flows as high as 30 ml · min−1 · 100 g−1, and the PET and microsphere data were highly correlated over the entire range of flows ( r 2 = 0.98, P < 0.0001). We conclude that muscle blood flow can be accurately measured in vivo by PET with H2 15O and that this approach offers promise for application in human studies of muscle metabolism under varying pathophysiological states.


2001 ◽  
Vol 25 (4) ◽  
pp. 306-312
Author(s):  
Tajinder P. Singh ◽  
Kevin Greer ◽  
Otto Muzik ◽  
Robert L. Hammond ◽  
Larry W. Stephenson ◽  
...  

2000 ◽  
Vol 83 (4-5) ◽  
pp. 395-401 ◽  
Author(s):  
Kari K. Kalliokoski ◽  
Jukka Kemppainen ◽  
Kirsti Larmola ◽  
Teemu O. Takala ◽  
Pauliina Peltoniemi ◽  
...  

Diabetes ◽  
1997 ◽  
Vol 46 (12) ◽  
pp. 2017-2021 ◽  
Author(s):  
Maria Raitakari ◽  
Pirjo Nuutila ◽  
Juhani Knuuti ◽  
Olli T Raitakari ◽  
Hanna Laine ◽  
...  

1999 ◽  
Vol 58 (4) ◽  
pp. 887-898 ◽  
Author(s):  
Göran Rådegran

The aim of the present review is to present techniques used for measuring blood flow in human subjects and advice as to when they may be applicable. Since blood flow is required to estimate substrate fluxes, energy turnover and metabolic rate of skeletal muscle, accurate measurements of blood flow are of extreme importance. Several techniques have therefore been developed to enable estimates to be made of the arterial inflow to, venous outflow from, or local blood flow within the muscle. Regional measurements have been performed using electromagnetic flow meters, plethysmography, indicator methods (e.g. thermodilution and indo-cyanine green dye infusion), ultrasound Doppler, and magnetic resonance velocity imaging. Local estimates have been made using 133Xe clearance, microdialysis, near i.r. spectroscopy, positron emission tomography and laser Doppler. In principle, the aim of the study, the type of interventions and the limitations of each technique determine which method may be most appropriate. Ultrasound Doppler and continuous indo-cyanine green dye infusion gives the most accurate limb blood flow measurements at rest. Moreover, the ultrasound Doppler is unique, as it does not demand a steady-state, and because its high temporal resolution allows detection of normal physiological variations as well as continuous measurements during transitional states such as at onset of and in recovery from exercise. During steady-state exercise thermodilution can be used in addition to indo-cyanine green dye infusion and ultrasound Doppler, where the latter is restricted to exercise modes with a fixed vessel position. Magnetic resonance velocity imaging may in addition be used to determine blood flow within deep single vessels. Positron emission tomography seems to be the most promising tool for local skeletal muscle blood-flow measurements in relation to metabolic activity, although the mode and intensity of exercise will be restricted by the apparatus design.


2001 ◽  
Vol 25 (4) ◽  
pp. 306-312
Author(s):  
Tajinder P. Singh ◽  
Kevin Greer ◽  
Otto Muzik ◽  
Robert L. Hammond ◽  
Larry W. Stephenson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document