A Schedule Method of Battery Energy Storage System (BESS) to Track Day-Ahead Photovoltaic Output Power Schedule Based on Short-Term Photovoltaic Power Prediction

Author(s):  
Tingting Yang ◽  
Xuecui Jia ◽  
Xiangjun Li ◽  
Dong Hui ◽  
Lei Qi
2019 ◽  
Vol 41 (6) ◽  
pp. 1519-1527 ◽  
Author(s):  
Xiaokun Dai ◽  
Yang Song ◽  
Taicheng Yang

This paper deals with the modelling and control for wind turbine combined with a battery energy storage system (WT/BESS). A proportional-integral (PI) controller of pitch angle is applied to adjust the output power of WT, and a method for battery scheduling is presented for maintaining the state of charging (SOC) of BESS. When the battery level is below the lower limit, we increase the expected output power of wind turbine through raising the operation point to charge the battery. Considering the effect of charging/discharging, a switched linear system model with two equilibriums is presented firstly for such WT/BESS system. The region stability is analyzed and an approach for estimating the corresponding stable region is also given. The effectiveness of the proposed results is demonstrated by a numerical example.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Rajkiran Singh ◽  
Seyedfoad Taghizadeh ◽  
Nadia M. L. Tan ◽  
Saad Mekhilef

This paper presents the experimental verification of a 2 kW battery energy storage system (BESS). The BESS comprises a full-bridge bidirectional isolated dc-dc converter and a PWM converter that is intended for integration with a photovoltaic (PV) generator, resulting in leveling of the intermittent output power from the PV generator at the utility side. A phase-shift controller is also employed to manage the charging and discharging operations of the BESS based on PV output power and battery voltage. Moreover, a current controller that uses the d-q synchronous reference frame is proposed to regulate the dc voltage at the high-voltage side (HVS) to ensure that the voltage ratio of the HVS with low-voltage side (LVS) is equivalent to the transformer turns ratio. The proposed controllers allow fast response to changes in real power requirements and results in unity power factor current injection at the utility side. In addition, the efficient active power injection is achieved as the switching losses are minimized. The peak efficiency of the bidirectional isolated dc-dc converter is measured up to 95.4% during battery charging and 95.1% for battery discharging.


Sign in / Sign up

Export Citation Format

Share Document