Automatic semantic labelling of human motion activity

Author(s):  
A. Garg ◽  
A. Naftel
2015 ◽  
Vol 135 (5) ◽  
pp. 178-183
Author(s):  
Fumihiro Washino ◽  
Yuki Matsumoto ◽  
Tomoya Tanaka ◽  
Koji Sonoda ◽  
Kensuke Kanda ◽  
...  

2020 ◽  
Vol 6 (33) ◽  
pp. eabb7043 ◽  
Author(s):  
Yan Wang ◽  
Sunghoon Lee ◽  
Tomoyuki Yokota ◽  
Haoyang Wang ◽  
Zhi Jiang ◽  
...  

Ultraconformable strain gauge can be applied directly to human skin for continuous motion activity monitoring, which has seen widespread application in interactive robotics, human motion detection, personal health monitoring, and therapeutics. However, the development of an on-skin strain gauge that can detect human body motions over a long period of time without disturbing the natural skin movements remains a challenge. Here, we present an ultrathin and durable nanomesh strain gauge for continuous motion activity monitoring that minimizes mechanical constraints on natural skin motions. The device is made from reinforced polyurethane-polydimethylsiloxane (PU-PDMS) nanomeshes and exhibits excellent sustainability, linearity, and durability with low hysteresis. Its thinness geometry and softness provide minimum mechanical interference on natural skin deformations. During speech, the nanomesh-attached face exhibits skin strain mapping comparable to that of a face without nanomeshes. We demonstrate long-term facial stain mapping during speech and the capability for real-time stable full-range body movement detection.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5342
Author(s):  
Ashok Kumar Patil ◽  
Adithya Balasubramanyam ◽  
Jae Yeong Ryu ◽  
Pavan Kumar B N ◽  
Bharatesh Chakravarthi ◽  
...  

Today, enhancement in sensing technology enables the use of multiple sensors to track human motion/activity precisely. Tracking human motion has various applications, such as fitness training, healthcare, rehabilitation, human-computer interaction, virtual reality, and activity recognition. Therefore, the fusion of multiple sensors creates new opportunities to develop and improve an existing system. This paper proposes a pose-tracking system by fusing multiple three-dimensional (3D) light detection and ranging (lidar) and inertial measurement unit (IMU) sensors. The initial step estimates the human skeletal parameters proportional to the target user’s height by extracting the point cloud from lidars. Next, IMUs are used to capture the orientation of each skeleton segment and estimate the respective joint positions. In the final stage, the displacement drift in the position is corrected by fusing the data from both sensors in real time. The installation setup is relatively effortless, flexible for sensor locations, and delivers results comparable to the state-of-the-art pose-tracking system. We evaluated the proposed system regarding its accuracy in the user’s height estimation, full-body joint position estimation, and reconstruction of the 3D avatar. We used a publicly available dataset for the experimental evaluation wherever possible. The results reveal that the accuracy of height and the position estimation is well within an acceptable range of ±3–5 cm. The reconstruction of the motion based on the publicly available dataset and our data is precise and realistic.


2000 ◽  
Vol 59 (2) ◽  
pp. 85-88 ◽  
Author(s):  
Rudolf Groner ◽  
Marina T. Groner ◽  
Kazuo Koga

2011 ◽  
Vol 131 (3) ◽  
pp. 267-274 ◽  
Author(s):  
Noboru Tsunashima ◽  
Yuki Yokokura ◽  
Seiichiro Katsura

2010 ◽  
Vol 130 (4) ◽  
pp. 436-442 ◽  
Author(s):  
Noboru Tsunashima ◽  
Seiichiro Katsura
Keyword(s):  

2005 ◽  
Author(s):  
David A. Forsyth ◽  
Okan Arikan ◽  
Leslie Ikemoto ◽  
James O'Brien ◽  
Deva Ramanan

Sign in / Sign up

Export Citation Format

Share Document