scholarly journals Study on lightning protection scheme of multi-terminal MMC-MVDC distribution system

High Voltage ◽  
2020 ◽  
Vol 5 (5) ◽  
pp. 605-613
Author(s):  
Yuqun Gao ◽  
Yongxia Han ◽  
Fanglei Xiao ◽  
Changfu Chen ◽  
Jinghan Zhang ◽  
...  
2012 ◽  
Vol 614-615 ◽  
pp. 1661-1665
Author(s):  
Ling Hui Deng ◽  
Zhi Xin Wang ◽  
Jian Min Duan

The low voltage DC (LVDC) distribution system is a new concept and a promising technology to be used in the future smart distribution system having high level cost-efficiency and reliability. In this paper, a low-voltage (LV) DC microgrid protection system design is proposed. Usually, an LVDC microgrid must be connected to an ac grid through converters with bidirectional power flow and, therefore, a different protection scheme is needed. This paper describes practical protection solutions for the LVDC network and an LVDC system laboratory prototype is being experimentally tested by MATLAB/SIMULINK. The results show that it is possible to use available devices to protect such a system. But other problems may arise which needs further study.


Author(s):  
Hideyuki Yamamoto ◽  
Toshiya Minejima ◽  
Ichiro Sumitani ◽  
Soji Kojima ◽  
Takato Fukano ◽  
...  

2019 ◽  
Vol 52 (5-6) ◽  
pp. 449-461 ◽  
Author(s):  
K Karthikumar ◽  
V Senthil Kumar ◽  
M Karuppiah

Increased utilization of nonlinear loads and fault event on the power system have resulted in a decline in the quality of power provided to the customers. It is fundamental to recognize and distinguish the power quality disturbances in the distribution system. To recognize and distinguish the power quality disturbances, the development of high protection schemes is required. This paper presents an optimal protection scheme for power quality event prediction and classification in the distribution system. The proposed protection scheme combines the performance of both the salp swarm optimization and artificial neural network. Here, artificial neural network is utilized in two phases with the objective function of prediction and classification of the power quality events. The first phase is utilized for recognizing the healthy or unhealthy condition of the system under various situations. Artificial neural network is utilized to perceive the system signal’s healthy or unhealthy condition under different circumstances. In the second phase, artificial neural network performs the classification of the unhealthy signals to recognize the right power quality event for assurance. In this phase, the artificial neural network learning method is enhanced by utilizing salp swarm optimization based on the minimum error objective function. The proposed method performs an assessment procedure to secure the system and classify the optimal power quality event which occurs in the distribution system. At that point, the proposed work is executed in the MATLAB/Simulink platform and the performance of the proposed system is compared with different existing techniques like Multiple Signal Classification-Artificial Neural Network (MUSIC-ANN), and Genetic Algorithm - Artificial Neural Network (GA-ANN). The comparison results demonstrate the superiority of the SSO-ANN technique and confirm its potential to power quality event prediction and classification.


2014 ◽  
Vol 960-961 ◽  
pp. 1376-1380
Author(s):  
Chong Xin Xu ◽  
Yan Jun Jiao

Power generation becomes a main way of using new energy. However, the access of distributed generation(DG) causes the ordinary protection system develop a series of problems. In this paper, the structure of distribution network with DG is introduced firstly.Secondly,it is analysed that the effect that DG brings to distribution network protection, and then a new protection scheme of distribution network with DG is put forward. The segment I, II of direction three-current protection on the line which is at the upstream of DG, and the next line’s segment I, II consists of a simple communication unit. Through the comprehensive judgment of two protections’ action results, fault can be isolated in minimum range quickly and accurately. Finally, the correctness and feasibility of the new protection principle are verified by simulating a 10KV distribution system.


Author(s):  
Chao Luo ◽  
Jun Yang ◽  
Yuanzhang Sun ◽  
Mao Cai ◽  
Jing Wu ◽  
...  

In this paper,the study of optimal coordination of directional overcurrent relays along with relay communication in HV substations is proposed. The relay coordination problem is non linear.It typically consist of two groups of control variables(Time Dial Settings:TDS and Plug Settings:PS). The purpose of relay coordination is to propose the suitable settings for all releases and ensure the coordination. The differential evolution is employed to solve for solutions of optimal relay coordination. The relay coordination is mainly done to improve selectivity of the relay to particular fault. ETAP is so popular for its capability for modelling of power system networks and analyzing various studies and Real Time simulations.


2002 ◽  
Vol 122 (6) ◽  
pp. 755-760 ◽  
Author(s):  
Keisuke Oka ◽  
Jun Motohashi ◽  
Masahiro Myoga ◽  
Shin-ichi Azuma ◽  
Sumie Kyomoto

Sign in / Sign up

Export Citation Format

Share Document