On the surface integral equation formulations for electromagnetic scattering and radiation problems

Author(s):  
P. Yla-Oijala ◽  
M. Taskinen
2021 ◽  
Vol 36 (6) ◽  
pp. 642-649
Author(s):  
Jinbo Liu ◽  
Hongyang Chen ◽  
Hui Zhang ◽  
Jin Yuan ◽  
Zengrui Li

To efficiently analyze the electromagnetic scattering from composite perfect electric conductor (PEC)-dielectric objects with coexisting closed-open PEC junctions, a modified hybrid integral equation (HIE) is established as the surface integral equation (SIE) part of the volume surface integral equation (VSIE), which employs the combined field integral equation (CFIE) and the electric field integral equation (EFIE) on the closed and open PEC surfaces, respectively. Different from the traditional HIE modeled for the objects whose closed and open PEC surfaces are strictly separate, the modified HIE can be applied to the objects containing closed-open junctions. A matrix equation is obtained by using the Galerkin’s method of moments (MoM), which is augmented with the spherical harmonics expansion-based multilevel fast multipole algorithm (SE-MLFMA), improved by the mixed-potential representation and the triangle/tetrahedron-based grouping scheme. Because in the improved SE-MLFMA, the memory usage for storing the radiation patterns of basis functions is independent of the SIE type in the VSIE, it is highly appropriate for the fast solution of the VSIE that contains the HIE. Various numerical experiments demonstrate that during the calculation of composite objects containing closed-open PEC junctions, the application of the modified HIE in the VSIE can give reliable results with fast convergence speed.


2020 ◽  
Author(s):  
John Stevenson

This article studies numerically the electromagnetic scattering properties of three dimensional (3D), arbitrary shaped dielectric resonator antennas which are composed of single and multi-layered (composite) dielectric materials. Using the equivalence principle and the integral equation techniques, we first derive a surface integral equation (SIE) formulation which produces well-conditioned matrix equation. We then develop an algorithm to speed up the matrix-vector multiplications by employing the well-known method of moments (MoM) and the multilevel fast multipole method (MLFMM) on personal computer (PC) clusters. To solve the obtained integral equations, we apply a Galerkin scheme and choose the basis and testing functions as Rao-Wilton-Glisson (RWG) defined on planar patches. Finally, we present some 3D numerical examples to demonstrate the validity and accuracy of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document