conductive surface
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 31)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
И.А. Баранников ◽  
Е.А. Ищенко ◽  
С.М. Фёдоров

Рассматривается плазменная вибраторная антенна, которая предназначена для работы в VHF диапазоне на частоте 140 МГц. Вибраторные плазменные антенны отличаются от обычных вибраторных антенн тем, что металлический проводник заменяется плазмой в газоразрядной трубке. Плазменный вибратор, создаваемый разрядом в трубке, способен включаться и выключаться за время порядка микросекунд. Применение плазменной антенны позволяет обеспечить два режима работы: активный, когда плазма индуцирует проводящую поверхность, и скрытый, когда антенна становится практически невидимой для электромагнитных волн, а плазменное облако отсутствует. Для определения характеристик антенны использовалось электродинамическое моделирование. Полученные результаты показывают, что характеристики плазменной вибраторной антенны близки к характеристикам эквивалентного ей металлического диполя, при этом длина плазменной антенны меньше. Для определения эффективности скрытного режима антенны производилось сравнение характеристик эффективной площади рассеяния плазменной антенны с выключенным плазменным облаком и эквивалентного металлического диполя. Полученные результаты показывают, что плазменная антенна обладает высокой эффективностью излучения, диаграммами направленности, схожими с эквивалентной дипольной антенной, и значительно меньшими значениями эффективной площади рассеяния (ЭПР) в выключенном режиме The article discusses a plasma dipole antenna, which is designed to operate in the VHF band at a frequency of 140 MHz. Plasma dipole antennas differ from conventional dipole antennas in that the metal conductor is replaced by plasma in the discharge tube. The plasma dipole created by the discharge in the tube is capable of turning on and off in times of the order of microseconds. The use of a plasma antenna makes it possible to provide two modes of operation: active, when the plasma induces a conductive surface, and hidden, when the antenna becomes practically invisible to electromagnetic waves, and the plasma cloud is absent. We used electrodynamic modeling to determine the characteristics of the antenna. The results show that the characteristics of the plasma dipole antenna are close to those of the equivalent metal dipole, while the length of the plasma antenna is shorter. To determine the efficiency of the hidden mode of the antenna, we compared the characteristics of radar cross-section of the plasma antenna with the plasma cloud turned off and the equivalent metal dipole. The results obtained show that the plasma antenna has a high radiation efficiency, directional patterns similar to an equivalent dipole antenna, and significantly lower RCS values in the off mode


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 73
Author(s):  
Mina Aleemardani ◽  
Pariya Zare ◽  
Amelia Seifalian ◽  
Zohreh Bagher ◽  
Alexander M. Seifalian

Peripheral nerve injury is a common medical condition that has a great impact on patient quality of life. Currently, surgical management is considered to be a gold standard first-line treatment; however, is often not successful and requires further surgical procedures. Commercially available FDA- and CE- approved decellularized nerve conduits offer considerable benefits to patients suffering from a completely transected nerve but they fail to support neural regeneration in gaps >30 mm. To address this unmet clinical need, current research is focused on biomaterial-based therapies to regenerate dysfunctional neural tissues, specifically damaged peripheral nerve, and spinal cord. Recently, attention has been paid to the capability of graphene-based materials (GBMs) to develop bifunctional scaffolds for promoting nerve regeneration, often via supporting enhanced neural differentiation. The unique features of GBMs have been applied to fabricate an electroactive conductive surface in order to direct stem cells and improve neural proliferation and differentiation. The use of GBMs for nerve tissue engineering (NTE) is considered an emerging technology bringing hope to peripheral nerve injury repair, with some products already in preclinical stages. This review assesses the last six years of research in the field of GBMs application in NTE, focusing on the fabrication and effects of GBMs for neurogenesis in various scaffold forms, including electrospun fibres, films, hydrogels, foams, 3D printing, and bioprinting.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3353
Author(s):  
Chih-Chiang Wang ◽  
Pao-Tai Lin ◽  
Fuh-Sheng Shieu ◽  
Han-Chang Shih

Bi2Se3 is a topological quantum material that is used in photodetectors, owing to its narrow bandgap, conductive surface, and insulating bulk. In this work, Ag@Bi2Se3 nanoplatelets were synthesized on Al2O3(100) substrates in a two-step process of thermal evaporation and magnetron sputtering. X-ray diffractometer (XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) revealed that all samples had the typical rhombohedral Bi2Se3. Field-emission scanning electron microscopy (FESEM)-energy dispersive x-ray spectroscopy (EDS), XPS, and HRTEM confirmed the presence of the precipitated Ag. The optical absorptance of Bi2Se3 nanoplatelets in UV-visible range decreased with the Ag contents. Results of photocurrent measurements under zero-bias conditions revealed that the deposited Ag affected photosensitivity. A total of 7.1 at.% Ag was associated with approximately 4.25 and 4.57 times higher photocurrents under UV and visible light, respectively, than 0 at.% Ag. The photocurrent in Bi2Se3 at 7.1 at.% Ag under visible light was 1.72-folds of that under UV light. This enhanced photocurrent is attributable to the narrow bandgap (~0.35 eV) of Bi2Se3 nanoplatelets, the Schottky field at the interface between Ag and Bi2Se3, the surface plasmon resonance that is caused by Ag, and the highly conductive surface that is formed from Ag and Bi2Se3. This work suggests that the appropriate Ag deposition enhances the photocurrent in, and increases the photosensitivity of, Bi2Se3 nanoplatelets under UV and visible light.


Author(s):  
Artur I. Krom ◽  
Maria I. Medvedeva ◽  
Ilya I. Ryzhkov

The ionic conductivity of nanopores with electrically conductive surface is investigated theoretically. The generalization of two-dimensional (2D) Space–charge model to calculating the ion transport under the applied potential gradient in a nanopore with constant surface potential is proposed for the first time. The results are compared with one-dimensional (1D) Uniform potential model, which is derived from the Space–charge model by assuming the independence of potential, ion concentrations, and pressure on the radial coordinate. We have found that the increase of surface potential magnitude leads to the enhancement of conductivity due to the increase of counter–ion concentration inside the nanopore. It is shown that the 1D and 2D models provide close results when the pore radius is smaller than the Debye length. Otherwise, the 1D model essentially overestimates the ionic conductivity. According to the 2D model, the ionic conductivity decreases with increasing the nanopore radius, while the 1D model predicts the opposite trend, which is not physically correct


2021 ◽  
pp. 137970
Author(s):  
Ilya I. Ryzhkov ◽  
Margarita A. Shchurkina ◽  
Elena V. Mikhlina ◽  
Mikhail M. Simunin ◽  
Ivan V. Nemtsev

2021 ◽  
Vol 11 (3) ◽  
pp. 1124
Author(s):  
Paola Francavilla ◽  
Diana P. Ferreira ◽  
Joana C. Araújo ◽  
Raul Fangueiro

Over the years, the development of adaptable monitoring systems to be integrated into soldiers’ body gear, making them as comfortable and lightweight as possible (avoiding the use of rigid electronics), has become essential. Electrospun microfibers are a great material for this application due to their excellent properties, especially their flexibility and lightness. Their functionalization with graphene nanoplatelets (GNPs) makes them a fantastic alternative for the development of innovative conductive materials. In this work, electrospun membranes based on polycaprolactone (PCL) were impregnated with different GNPs concentrations in order to create an electrically conductive surface with piezoresistive behavior. All the samples were properly characterized, demonstrating the homogeneous distribution and the GNPs’ adsorption onto the membrane’s surfaces. Additionally, the electrical performance of the developed systems was studied, including the electrical conductivity, piezoresistive behavior, and Gauge Factor (GF). A maximum electrical conductivity value of 0.079 S/m was obtained for the 2%GNPs-PCL sample. The developed piezoresistive sensor showed high sensitivity to external pressures and excellent durability to repetitive pressing. The best value of GF (3.20) was obtained for the membranes with 0.5% of GNPs. Hence, this work presents the development of a flexible piezoresistive sensor, based on electrospun PCL microfibers and GNPs, utilizing simple methods.


Sign in / Sign up

Export Citation Format

Share Document