2017 ◽  
Vol 9 (8) ◽  
pp. 1695-1703
Author(s):  
Haixiong Li ◽  
Yunlong Gong ◽  
Jiakai Zhang ◽  
Jun Ding ◽  
Chenjiang Guo

In this paper, a coplanar waveguide (CPW)-fed dual-band uniplanar tri-polarization reconfigurable antenna based on the PIN diode switch is proposed. The proposed antenna can be reconfigured between the linear polarization (LP) and the circular polarization (CP) mode, including both the right-handed circular polarization and left-handed circular polarization simultaneously within the dual operating bands. The central frequencies of the bands are 2.63 and 4.42 GHz, respectively, and the overlapped operating bandwidth is 17.8 and 3.40%. The proposed reconfigurable antenna is a closed-slot antenna fed by the CPW transmission line and the reconfigurable mechanism is to regulate the T-shaped driven stub through switching the PIN diodes on and off. The scattering parameters, axial ratio, radiation pattern, gain, and the radiation efficiency of the proposed antenna are all investigated in the following. The optimized antenna has been fabricated to experimental test, the simulated and the measured results agree well with each other. The lower frequency band of the proposed antenna covers the 2.40 GHz WLAN specification and the upper band can be used for the 5 G communication (4.40–4.50 GHz); therefore it is suitable to be applied in the mobile wireless communication.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Tianpeng Li ◽  
Jian Zhang ◽  
Baowei Cheng ◽  
Xue Lei ◽  
Zhijian Xu ◽  
...  

This paper addresses the issues of low bandwidth, gain, and efficiency of miniaturized microwave antennas by proposing a novel wideband dual-frequency coplanar waveguide antenna design based on a simplified composite right/left-handed (SCRLH) transmission line structure with Hilbert curve loading. The multifrequency characteristics of the SCRLH transmission line structure are evaluated theoretically, and the antenna parameters promoting bandwidth broadening under zeroth-order resonance (ZOR) and first-order resonance (FOR) mode operation are evaluated. The bandwidth broadening in the ZOR and FOR modes is accordingly revealed to be independent of the antenna length, and the structure therefore facilitates wideband operation under miniaturization. Finally, the dual-frequency ZOR and FOR mode antenna design with center frequencies of f0 = 1.865 GHz and f1 = 2.835 GHz is validated via simulation, and the performance of a compact prototype antenna is evaluated experimentally. The −10 dB return loss bandwidths at f0 and f1 are 187 MHz (from 1.773 GHz to 1.96 GHz) and 368 MHz (from 3.002 GHz to 3.37 GHz), and the corresponding relative bandwidths are 10.1% and 11.5%, respectively. The experimentally measured peak gains and radiation efficiencies at f0 are 1.54 dB and 81.3%, respectively, and those at f1 are 1.71 dB and 74.2%, respectively.


2011 ◽  
Vol 109 (7) ◽  
pp. 07A333 ◽  
Author(s):  
Jia-Hui Fu ◽  
Qun Wu ◽  
Guo-Hui Yang ◽  
Fan-Yi Meng ◽  
Jong-Chul Lee

Sign in / Sign up

Export Citation Format

Share Document