wave antenna
Recently Published Documents


TOTAL DOCUMENTS

2031
(FIVE YEARS 399)

H-INDEX

50
(FIVE YEARS 4)

Author(s):  
Muhannad Kaml Abdulhameed ◽  
Sarah Rafil Hashim ◽  
Noor Kamil Abdalhameed ◽  
Ahmed Jamal Abdullah Al-Gburi

<p class="Default">The radiation power in the endfire is decreased while the main beam of half substrate integrated waveguide scan from broadside to endfire in a forward. The design of half-width microstrip leaky-wave antenna (HW-MLWA) has been presented in this work to increase the power radiation near endfire by using the slots technique in the radiation element. This slot leads to a decrease the cross-polarization. The proposed design comprises one element of HW-MLWA with repeated meandered square slots in the radiation element. One aspect of this antenna is generated by using a half substrate integrated waveguide with a full tapered feed line. The proposed antenna was terminated by load of 50 Ω, and feed on the other end of the antenna. Finally, the suggested design is simulated and acceptable results were found. The released gain is increased from 10.6 dBi to 12 dBi at 4.3 GHz. This design is suitable for unmanned aerial vehicle UAVs at C band application.</p>


Author(s):  
Xiaowen Li ◽  
Junhong Wang ◽  
Zheng Li ◽  
Yujian Li ◽  
Yunjie Geng ◽  
...  

Author(s):  
Oras Ahmed Shareef ◽  
Ahmed Mohammed Ahmed Sabaawi ◽  
Karrar Shakir Muttair ◽  
Mahmood Farhan Mosleh ◽  
Mohammad Bashir Almashhdany

The design of a millimeter wave (mmW) antenna for the 5G mobile applications is presented in this paper. The designed antenna has dimensions of 10×10×0.245 mm<sup>3</sup>. This includes the copper ground plane. The resonance of the proposed mmW antenna lies within the range of 33 GHz and 43 GHz. These frequency bands are covering the 5G proposed band in terms of the signal speed, data transmission, and high spectral efficiencies. Computer simulation technology (CST) software is used to simulate the proposed 5G antenna including the characteristics of S-parameters, gain, and radiation pattern. Simulation results show that the return loss at resonant frequencies goes -22 dB, which satisfies the requirements of 5G mobile technology.


Sign in / Sign up

Export Citation Format

Share Document