wireless communication
Recently Published Documents


TOTAL DOCUMENTS

9750
(FIVE YEARS 3924)

H-INDEX

88
(FIVE YEARS 29)

2022 ◽  
Vol 20 (3) ◽  
pp. 481-487
Author(s):  
Jose Antonio Micheletti ◽  
Eduardo Paciencia Godoy

Author(s):  
Chanintorn Jittawiriyanukoon ◽  
Vilasinee Srisarkun

The IEEE 802.11ay wireless communication standard consents gadgets to link in the spectrum of millimeter wave (mm-Wave) 60 Giga Hertz band through 100 Gbps bandwidth. The development of promising high bandwidth in communication networks is a must as QoS, throughput and error rates of bandwidth-intensive applications like merged reality (MR), artificial intelligence (AI) related apps or wireless communication boggling exceed the extent of the chronic 802.11 standard established in 2012. Thus, the IEEE 802.11ay task group committee has newly amended recent physical (PHY) and medium access control (MAC) blueprints to guarantee a technical achievement especially in link delay on multipath fading channels (MPFC). However, due to the congestion of super bandwidth intensive apps such as IoT and big data, we propose to diversify a propagation delay to practical extension. This article then focuses on a real-world situation and how the IEEE 802.11ay design is affected by the performance of mm-Wave propagation. In specific, we randomize the unstable MPFC link capacity by taking the divergence of congested network parameters into account. The efficiency of congested MPFC-based wireless network is simulated and confirmed by advancements described in the standard.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Cong Ma ◽  
Wonjun Chung

With the development of wireless communication technology, video and multimedia have become an integral part of visual communication design. Designers want higher interactivity, diversity, humanization, and plurality of attributes in the process of visual communication. This makes the process of visual communication have high requirements for the quality and real-time data transmission. To address the problem of transmitting HD video in a heterogeneous wireless network with multiple concurrent streams to improve the transmission rate and thus enhance the user experience, with the optimization goal of minimizing the system transmission delay and the delay difference between paths, the video sender and receiver are jointly considered, and the video transmission rate and the cache size at the receiver are adaptively adjusted to improve the user experience, and a cooperative wireless communication video transmission based on the control model for video transmission based on cooperative wireless communication is established, and video streams with self-similarity and long correlation are studied based on Pareto distribution and P / P / l queuing theory, based on which an adaptive streaming decision method for video streams in heterogeneous wireless networks is proposed. Simulation results show that the proposed multistream concurrent adaptive transmission control method for heterogeneous networks is superior in terms of delay and packet loss rate compared with the general load balancing streaming decision method, in terms of transmission efficiency and accuracy.


2022 ◽  
Vol 12 (2) ◽  
pp. 821
Author(s):  
Sarosh Ahmad ◽  
Umer Ijaz ◽  
Salman Naseer ◽  
Adnan Ghaffar ◽  
Muhammad Awais Qasim ◽  
...  

A type of telecommunication technology called an ultra-wideband (UWB) is used to provide a typical solution for short-range wireless communication due to large bandwidth and low power consumption in transmission and reception. Printed monopole antennas are considered as a preferred platform for implementing this technology because of its alluring characteristics such as light weight, low cost, ease of fabrication, integration capability with other systems, etc. Therefore, a compact-sized ultra-wideband (UWB) printed monopole antenna with improved gain and efficiency is presented in this article. Computer simulation technology microwave studio (CSTMWS) software is used to build and analyze the proposed antenna design technique. This broadband printed monopole antenna contains a jug-shaped radiator fed by a coplanar waveguide (CPW) technique. The designed UWB antenna is fabricated on a low-cost FR-4 substrate with relative permittivity of 4.3, loss tangent of 0.025, and a standard height of 1.6 mm, sized at 25 mm × 22 mm × 1.6 mm, suitable for wireless communication system. The designed UWB antenna works with maximum gain (peak gain of 4.1 dB) across the whole UWB spectrum of 3–11 GHz. The results are simulated, measured, and debated in detail. Different parametric studies based on numerical simulations are involved to arrive at the optimal design through monitoring the effects of adding cuts on the performance of the proposed antennas. Therefore, these parametric studies are optimized to achieve maximum antenna bandwidth with relatively best gain. The proposed patch antenna shape is like a jug with a handle that offers greater bandwidth, good gain, higher efficiency, and compact size.


Author(s):  
Qutaiba I. Ali ◽  
Firas S. Alsharbaty

Abstract: Power grid is one of the most important manifestations of the modern civilization and the engine of it where it is described as a digestive system of the civil life. It is a structure has three main functions: generation, transmission lines, distribution. This concept was appropriate for a century. However, the beginning of the twenty-first century brought dramatic changes on different domains: media, human growth, economic, environmental, political, and technical etc. Smart grid is a sophisticated structure including cyber and physical bodies hence it reinforces the sustainability, the energy management, the capability of integration with microgrids, and exploiting the renewable energy resources. The quantum leap of smart grid is related to the advanced communication networks that deal with the cyber part. Moreover, the communication networks of smart grid offer attractive capabilities such as monitoring, control, and protection at the level of real time. The wireless communication techniques in integration frame are promised solution to compensate the requirements of smart grid designing such as wireless local area networks, worldwide interoperability for microwave access, long term evolution, and narrowband- internet of things. These technologies could provide high capacity, flexibility, low-cost maintenance for smart grid. However, the multi-interfaces in smart grid may exploit by persons or agencies to implement different types of cyber-attacks may lead to dangerous damage. This research paper reviews the up-to-date researches in the field of smart grid to handle the new trends and topics in one frame in order to offer integration vision in this vital section. It concentrates on the section of communication networks the mainstay of smart grid. This paper discusses the challenging and requirements of adopting the wireless communication technologies and delves deeply into literature review to devise and suggest solutions to compensate the impairments efficiently. Moreover, it explores the cyber security that representing the real defiant to implement the concept of smart grid safely.


2022 ◽  
Author(s):  
Demos Serghiou ◽  
Mohsen Khalily ◽  
Tim Brown ◽  
Rahim Tafazolli

The Terahertz (THz) band (0.1-3.0 THz) spans a great portion of the Radio Frequency (RF) spectrum that is mostly unoccupied and unregulated. It is a potential candidate for application in Sixth-Generation (6G) wireless networks as it has the capabilities of satisfying the high data rate and capacity requirements of future wireless communication systems. Profound knowledge of the propagation channel is crucial in communication systems design which nonetheless, is still at its infancy as channel modeling at THz frequencies has been mostly limited to characterizing fixed Point-to-Point (P2P) scenarios up to 300 GHz. Provided the technology matures enough and models adapt to the distinctive characteristics of the THz wave, future wireless communications systems will enable a plethora of new use cases and applications to be realized in addition to delivering higher spectral efficiencies that would ultimately enhance the Quality-of-Service (QoS) to the end user. In this paper, we provide an insight into THz channel propagation characteristics, measurement capabilities and modeling methods along with recommendations that will aid in the development of future models in the THz band. We survey the most recent and important measurement campaigns and modeling efforts found in literature based on the use cases and system requirements identified. Finally, we discuss the challenges and limitations of measurements and modeling at such high frequencies and contemplate the future research outlook toward realizing the 6G vision.


2022 ◽  
Author(s):  
Demos Serghiou ◽  
Mohsen Khalily ◽  
Tim Brown ◽  
Rahim Tafazolli

Terahertz channel propagation phenomena, measurements and modelling for 6G wireless communication applications: a survey, open challenges and future research directions


2022 ◽  
Author(s):  
Demos Serghiou ◽  
Mohsen Khalily ◽  
Tim Brown ◽  
Rahim Tafazolli

The Terahertz (THz) band (0.1-3.0 THz) spans a great portion of the Radio Frequency (RF) spectrum that is mostly unoccupied and unregulated. It is a potential candidate for application in Sixth-Generation (6G) wireless networks as it has the capabilities of satisfying the high data rate and capacity requirements of future wireless communication systems. Profound knowledge of the propagation channel is crucial in communication systems design which nonetheless, is still at its infancy as channel modeling at THz frequencies has been mostly limited to characterizing fixed Point-to-Point (P2P) scenarios up to 300 GHz. Provided the technology matures enough and models adapt to the distinctive characteristics of the THz wave, future wireless communications systems will enable a plethora of new use cases and applications to be realized in addition to delivering higher spectral efficiencies that would ultimately enhance the Quality-of-Service (QoS) to the end user. In this paper, we provide an insight into THz channel propagation characteristics, measurement capabilities and modeling methods along with recommendations that will aid in the development of future models in the THz band. We survey the most recent and important measurement campaigns and modeling efforts found in literature based on the use cases and system requirements identified. Finally, we discuss the challenges and limitations of measurements and modeling at such high frequencies and contemplate the future research outlook toward realizing the 6G vision.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Ruicheng Li ◽  
Heng Chen

Nowadays, individuals with and without technical knowledge have started utilizing the technology to a broader extent. The utilization of technology has gone deeper concerning gadgets that aid in wireless communication with anyone or anything. This advancement has paved the way for a trending technology named wireless communication network (WCN) in recent years. In addition to this, there has been a significant change and development in the field of trading goods. Manual ordering of goods has changed to online ordering, and hence, supply chain management. This research focuses on applying WCN to a logistic tracking information system (LTIS) for a university with automatic control of the system. A novel algorithm named intelligent logistics system construction algorithm is implemented to evaluate the efficiency and performance of data. This model aids in the tracking goods and automatic control of university logistics.


Sign in / Sign up

Export Citation Format

Share Document