A novel differential fault analysis using two‐byte fault model on AES Key schedule

2019 ◽  
Vol 13 (5) ◽  
pp. 661-666 ◽  
Author(s):  
Jinbao Zhang ◽  
Ning Wu ◽  
Jianhua Li ◽  
Fang Zhou
Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 93 ◽  
Author(s):  
Jinbao Zhang ◽  
Ning Wu ◽  
Fang Zhou ◽  
Muhammad Yahya ◽  
Jianhua Li

As a family of lightweight block ciphers, SIMON has attracted lots of research attention since its publication in 2013. Recent works show that SIMON is vulnerable to differential fault analysis (DFA) and existing DFAs on SIMON assume the location of induced faults are on the cipher states. In this paper, a novel DFA on SIMON is proposed where the key schedule is selected as the location of induced faults. Firstly, we assume a random one-bit fault is induced in the fourth round key KT−4 to the last. Then, by utilizing the key schedule propagation properties of SIMON, we determine the exact position of induced fault and demonstrate that the proposed DFA can retrieve 4 bits of the last round key KT−1 on average using one-bit fault. Till now this is the largest number of bits that can be cracked as compared to DFAs based on random bit fault model. Furthermore, by reusing the induced fault, we prove that 2 bits of the penultimate round key KT−2 could be retrieved. To the best of our knowledge, the proposed attack is the first one which extracts a key from SIMON based upon DFA on the key schedule. Finally, correctness and validity of our proposed attack is verified through detailed simulation and analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Ruyan Wang ◽  
Xiaohan Meng ◽  
Yang Li ◽  
Jian Wang

Differential Fault Analysis (DFA) is one of the most practical methods to recover the secret keys from real cryptographic devices. In particular, DFA on Advanced Encryption Standard (AES) has been massively researched for many years for both single-byte and multibyte fault model. For AES, the first proposed DFA attack requires 6 pairs of ciphertexts to identify the secret key under multibyte fault model. Until now, the most efficient DFA under multibyte fault model proposed in 2017 can complete most of the attacks within 3 pairs of ciphertexts. However, we note that the attack is not fully optimized since no clear optimization goal was set. In this work, we introduce two optimization goals as the fewest ciphertext pairs and the least computational complexity. For these goals, we manage to figure out the corresponding optimized key recovery strategies, which further increase the efficiency of DFA attacks on AES. A more accurate security assessment of AES can be completed based on our study of DFA attacks on AES. Considering the variations of fault distribution, the improvement to the attack has been analyzed and verified.


Sign in / Sign up

Export Citation Format

Share Document