scholarly journals GNSS/MEMS IMU ultra‐tightly integrated navigation system based on dual‐loop NCO control method and cascaded channel filters

2018 ◽  
Vol 12 (11) ◽  
pp. 1241-1250 ◽  
Author(s):  
Baoyu Liu ◽  
Xingqun Zhan ◽  
Ming Liu
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Huisheng Liu ◽  
Zengcai Wang ◽  
Susu Fang ◽  
Chao Li

A constrained low-cost SINS/OD filter aided with magnetometer is proposed in this paper. The filter is designed to provide a land vehicle navigation solution by fusing the measurements of the microelectromechanical systems based inertial measurement unit (MEMS IMU), the magnetometer (MAG), and the velocity measurement from odometer (OD). First, accelerometer and magnetometer integrated algorithm is studied to stabilize the attitude angle. Next, a SINS/OD/MAG integrated navigation system is designed and simulated, using an adaptive Kalman filter (AKF). It is shown that the accuracy of the integrated navigation system will be implemented to some extent. The field-test shows that the azimuth misalignment angle will diminish to less than 1°. Finally, an outliers detection algorithm is studied to estimate the velocity measurement bias of the odometer. The experimental results show the enhancement in restraining observation outliers that improves the precision of the integrated navigation system.


2014 ◽  
Vol 568-570 ◽  
pp. 970-975 ◽  
Author(s):  
Yang Le ◽  
Xiu Feng He ◽  
Ru Ya Xiao

This paper describes an integrated MEMS IMU and GNSS system for vehicles. The GNSS system is developed to accurately estimate the vehicle azimuth, and the integrated GNSS/IMU provides attitude, position and velocity. This research is aimed at producing a low-cost integrated navigation system for vehicles. Thus, an inexpensive solid-state MEMS IMU is used to smooth the noise and to provide a high bandwidth response. The integration system with uncertain dynamics modeling and uncertain measurement noise is also studied. An interval adaptive Kalman filter is developed for such an uncertain integrated system, since the standard extended Kalman filter (SKF) is no longer applicable, and a method of adaptive factor construction with uncertain parameter is proposed for the nonlinear integrated GNSS/IMU system. The results from the actual GNSS/IMU integrated system indicate that the filtering method proposed is effective.


2012 ◽  
Vol 19 (2) ◽  
pp. 71-98 ◽  
Author(s):  
Roberto Sabatini ◽  
Celia Bartel ◽  
Anish Kaharkar ◽  
Tesheen Shaid ◽  
Leopoldo Rodriguez ◽  
...  

Abstract In this paper we present a new low-cost navigation system designed for small size Unmanned Aerial Vehicles (UAVs) based on Vision-Based Navigation (VBN) and other avionics sensors. The main objective of our research was to design a compact, light and relatively inexpensive system capable of providing the Required Navigation Performance (RNP) in all phases of flight of a small UAV, with a special focus on precision approach and landing, where Vision Based Navigation (VBN) techniques can be fully exploited in a multisensor integrated architecture. Various existing techniques for VBN were compared and the Appearance-Based Approach (ABA) was selected for implementation. Feature extraction and optical flow techniques were employed to estimate flight parameters such as roll angle, pitch angle, deviation from the runway and body rates. Additionally, we addressed the possible synergies between VBN, Global Navigation Satellite System (GNSS) and MEMS-IMU (Micro-Electromechanical System Inertial Measurement Unit) sensors, as well as the aiding from Aircraft Dynamics Models (ADMs). In particular, by employing these sensors/models, we aimed to compensate for the shortcomings of VBN and MEMS-IMU sensors in high-dynamics attitude determination tasks. An Extended Kalman Filter (EKF) was developed to fuse the information provided by the different sensors and to provide estimates of position, velocity and attitude of the UAV platform in real-time. Two different integrated navigation system architectures were implemented. The first used VBN at 20 Hz and GPS at 1 Hz to augment the MEMS-IMU running at 100 Hz. The second mode also included the ADM (computations performed at 100 Hz) to provide augmentation of the attitude channel. Simulation of these two modes was accomplished in a significant portion of the AEROSONDE UAV operational flight envelope and performing a variety of representative manoeuvres (i.e., straight climb, level turning, turning descent and climb, straight descent, etc.). Simulation of the first integrated navigation system architecture (VBN/IMU/GPS) showed that the integrated system can reach position, velocity and attitude accuracies compatible with CAT-II precision approach requirements. Simulation of the second system architecture (VBN/IMU/GPS/ADM) also showed promising results since the achieved attitude accuracy was higher using the ADM/VBS/IMU than using VBS/IMU only. However, due to rapid divergence of the ADM virtual sensor, there was a need for frequent re-initialisation of the ADM data module, which was strongly dependent on the UAV flight dynamics and the specific manoeuvring transitions performed


2014 ◽  
Vol 3 (2) ◽  
pp. 53-62 ◽  
Author(s):  
Jeong Won Kim ◽  
Chang Woo Nam ◽  
Jae-Cheul Lee ◽  
Sung Jin Yoon ◽  
Jaewook Rhim

Sign in / Sign up

Export Citation Format

Share Document