land vehicle
Recently Published Documents


TOTAL DOCUMENTS

401
(FIVE YEARS 69)

H-INDEX

28
(FIVE YEARS 2)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 636
Author(s):  
Lingli Yu ◽  
Shuxin Huo ◽  
Keyi Li ◽  
Yadong Wei

An intelligent land vehicle utilizes onboard sensors to acquire observed states at a disorderly intersection. However, partial observation of the environment occurs due to sensor noise. This causes decision failure easily. A collision relationship-based driving behavior decision-making method via deep recurrent Q network (CR-DRQN) is proposed for intelligent land vehicles. First, the collision relationship between the intelligent land vehicle and surrounding vehicles is designed as the input. The collision relationship is extracted from the observed states with the sensor noise. This avoids a CR-DRQN dimension explosion and speeds up the network training. Then, DRQN is utilized to attenuate the impact of the input noise and achieve driving behavior decision-making. Finally, some comparative experiments are conducted to verify the effectiveness of the proposed method. CR-DRQN maintains a high decision success rate at a disorderly intersection with partially observable states. In addition, the proposed method is outstanding in the aspects of safety, the ability of collision risk prediction, and comfort.


2021 ◽  
Vol 22 (6) ◽  
pp. 1723-1733
Author(s):  
Yoonjin Hwang ◽  
Yongseop Jeong ◽  
In So Kweon ◽  
Seibum Choi

2021 ◽  
Author(s):  
Keyi Xu ◽  
Leilei Li ◽  
Ruizhi Chen ◽  
Yujie Li ◽  
Qihai Huang

2021 ◽  
Vol 18 (5) ◽  
pp. 172988142110427
Author(s):  
Jing Zhang ◽  
Jun Wu ◽  
Xiao Shen ◽  
Yunsong Li

The path planning of autonomous land vehicle has become a research hotspot in recent years. In this article, we present a novel path planning algorithm for an autonomous land vehicle. According to the characteristics of autonomous movement towards the autonomous land vehicle, an improved A-Star path planning algorithm is designed. The disadvantages of using the A-Star algorithm for path planning are that the path planned by the A-Star algorithm contains many unnecessary turning points and is not smooth enough. Autonomous land vehicle needs to adjust its posture at each turning point, which will greatly waste time and also will not be conducive to the motion control of autonomous land vehicle. In view of these shortcomings, this article proposes a new heuristic function combined with the artificial potential field method, which contains both distance information and obstacle information. Our proposed algorithm shows excellent performance in improving the execution efficiency and reducing the number of turning points. The simulation results show that the proposed algorithm, compared with the traditional A-Star algorithm, makes the path smoother and makes the autonomous land vehicle easier to control.


2021 ◽  
Author(s):  
Hassan E. Ibrahim

In Global Positioning System (GPS), Precise Point Positioning (PPP) achieves the highest accuracy in point positioning. It approaches centimetre-level accuracy in static mode and sub-decimetre accuracy in kinematic mode. PPP is an alternative approach to carrier-phase-based Differential GPS (DGPS) and offers advantages over DGPS. PPP uses GPS observations from a single receiver for position estimation, which is simpler than using more than one GPS receiver. However, PPP needs rigorous modelling for all errors and biases, which are otherwise cancelled out or mitigated when using DGPS. PPP’s popularity is on the rise, as it is ideal for land-vehicle positioning and navigation. However, in challenging environments, PPP suffers from a signal loss that prevent continuous navigation or a reduction in the number of visible satellites that causes accuracy degradation. This research integrates PPP with a Reduced Inertial Sensors System (RISS) — a low-cost system that uses data from reduced MEMS-based inertial sensors and vehicle odometry — to provide accurate and inexpensive land-vehicle navigation systems. The system is integrated in a tightly coupled mode through the use of an Extended Kalman Filter (EKF), which employs an improved error model for the RISS data. The system was tested using data from real driving routes with single-frequency code-based PPP/RISS (SF-code-PPP/RISS), dual-frequency code-based PPP (DF-code-PPP/RISS), smoothed dual-frequency code-based PPP (S-DF-code-PPP/RISS), and code- and carrier-phase-based PPP (code-carrier-PPP/RISS). The performance of the developed PPP/RISS was evaluated using position RMS and maximum errors during continuous GPS availability as well as during signal outages. The developed integrated algorithms were assessed using three real road tests that capture different navigational conditions. The results show that when five or more satellites are available, code-carrier-PPP/RISS solution is superior to that of SF- and DF-code-PP/RISS. For latitude, code-carrier-PPP/RISS solution was 47% and 20% more precise than the SF- and DF-code- PP/RISS counterparts, respectively. For longitude, code-carrier-PPP/RISS solution was 65% and 31% more precise than the SF- and DF-Code-PP/RISS counterparts, respectively. Similarly, the altitude solution was improved by 46% and 25%, respectively. During GPS signal outages of 60 seconds, code-carrier-PPP/RISS’s algorithms outperformed that of SF- and DF-code-PPP/RISS by about 35% when the satellite availability level was set to three satellites. For other satellite availability levels, the algorithms performed almost identically.


2021 ◽  
Author(s):  
Hassan E. Ibrahim

In Global Positioning System (GPS), Precise Point Positioning (PPP) achieves the highest accuracy in point positioning. It approaches centimetre-level accuracy in static mode and sub-decimetre accuracy in kinematic mode. PPP is an alternative approach to carrier-phase-based Differential GPS (DGPS) and offers advantages over DGPS. PPP uses GPS observations from a single receiver for position estimation, which is simpler than using more than one GPS receiver. However, PPP needs rigorous modelling for all errors and biases, which are otherwise cancelled out or mitigated when using DGPS. PPP’s popularity is on the rise, as it is ideal for land-vehicle positioning and navigation. However, in challenging environments, PPP suffers from a signal loss that prevent continuous navigation or a reduction in the number of visible satellites that causes accuracy degradation. This research integrates PPP with a Reduced Inertial Sensors System (RISS) — a low-cost system that uses data from reduced MEMS-based inertial sensors and vehicle odometry — to provide accurate and inexpensive land-vehicle navigation systems. The system is integrated in a tightly coupled mode through the use of an Extended Kalman Filter (EKF), which employs an improved error model for the RISS data. The system was tested using data from real driving routes with single-frequency code-based PPP/RISS (SF-code-PPP/RISS), dual-frequency code-based PPP (DF-code-PPP/RISS), smoothed dual-frequency code-based PPP (S-DF-code-PPP/RISS), and code- and carrier-phase-based PPP (code-carrier-PPP/RISS). The performance of the developed PPP/RISS was evaluated using position RMS and maximum errors during continuous GPS availability as well as during signal outages. The developed integrated algorithms were assessed using three real road tests that capture different navigational conditions. The results show that when five or more satellites are available, code-carrier-PPP/RISS solution is superior to that of SF- and DF-code-PP/RISS. For latitude, code-carrier-PPP/RISS solution was 47% and 20% more precise than the SF- and DF-code- PP/RISS counterparts, respectively. For longitude, code-carrier-PPP/RISS solution was 65% and 31% more precise than the SF- and DF-Code-PP/RISS counterparts, respectively. Similarly, the altitude solution was improved by 46% and 25%, respectively. During GPS signal outages of 60 seconds, code-carrier-PPP/RISS’s algorithms outperformed that of SF- and DF-code-PPP/RISS by about 35% when the satellite availability level was set to three satellites. For other satellite availability levels, the algorithms performed almost identically.


Sign in / Sign up

Export Citation Format

Share Document