scholarly journals An observer‐based current reconstruction of induction motor driven water pump with improved power flow control by ANN based DPC of PV‐grid interactive system

2021 ◽  
Author(s):  
Saurabh Shukla ◽  
Bhim Singh ◽  
Ahmad Al‐Durra
2018 ◽  
Vol 138 (3) ◽  
pp. 219-226
Author(s):  
Takuma Takeuchi ◽  
Takehiro Imura ◽  
Daisuke Gunji ◽  
Hiroshi Fujimoto ◽  
Yoichi Hori

Author(s):  
A. Hernandez ◽  
M.A. Rodriguez ◽  
E. Torres ◽  
P. Eguia

2013 ◽  
Vol 1 (4) ◽  
pp. 17-27
Author(s):  
G.N. Sreenivas ◽  
◽  
A. Yashoda Devi ◽  
K. Suresh Kumar ◽  
◽  
...  

2015 ◽  
Vol 9 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Yang Liu-Lin ◽  
Hang Nai-Shan

This paper researched steady power flow control with variable inequality constraints. Since the inverse function of power flow equation is hard to obtain, differentiation coherence algorithm was proposed for variable inequality which is tightly constrained. By this method, tightly constrained variable inequality for variables adjustment relationships was analyzed. The variable constrained sensitivity which reflects variable coherence was obtained to archive accurate extreme equation for function optimization. The hybrid power flow mode of node power with branch power was structured. It also structured the minimum variable model correction equation with convergence and robot being same as conventional power flow. In fundamental analysis, the effect of extreme point was verified by small deviation from constrained extreme equation, and the constrained sensitivity was made for active and reactive power. It pointed out possible deviation by using simplified non-constrained sensitivity to deal with the optimization problem of active and reactive power. The control solutions for power flow for optimal control have been discussed as well. The examples of power flow control and voltage management have shown that the algorithm is simple and concentrated and shows the effect of differential coherence method for extreme point analysis.


2013 ◽  
Vol 385-386 ◽  
pp. 1078-1081 ◽  
Author(s):  
Fang Zhang ◽  
Jian Ping Chen ◽  
Chuan Dong Li ◽  
Yan Juan Wu

The main objective of power flow control for unified power flow controller (UPFC) is to increase the transmission capacity over the existing transmission corridor or line. This paper presents a practical engineering methodology of embedding the power flow control model of UPFC into the commercial software -- power system analysis software package (PSASP) based on its user program interface (UPI) function. In the proposed methodology, the interface currents of UPFC series side and UPFC shunt side between the UPFC device and the network are used to control the transmission line power flow and UPFC bus voltage, respectively. In UPFC series side, the current of UPFC series branch is calculated from the power target equation of the controlled line. In UPFC shunt side, the shunt reactive current of UPFC is used to control the bus voltage. Simulation results on a practical power system show that the proposed methodology can be efficiently applied to the engineering research and analysis of the real power grid with UPFC with good convergence and only one control parameter needed to be prescribed.


Sign in / Sign up

Export Citation Format

Share Document