wireless power transfer system
Recently Published Documents


TOTAL DOCUMENTS

1621
(FIVE YEARS 748)

H-INDEX

39
(FIVE YEARS 11)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Dongyong Shan ◽  
Haiyue Wang ◽  
Ke Cao ◽  
Junhua Zhang

AbstractThe wireless power transfer (WPT) system has been widely used in various fields such as household appliances, electric vehicle charging and sensor applications. A frequency reconfigurable magnetic resonant coupling wireless power transfer (MRCWPT) system with dynamically enhanced efficiency by using the frequency reconfigurable metamaterial is proposed in this paper. The reconfigurability is achieved by adjusting the capacitance value of the adjustable capacitor connected in the coil of the system. Finite element simulation results have shown that the frequency reconfigurable electromagnetic metamaterial can manipulate the direction of the electromagnetic field of the system due to its abnormal effective permeability. The ultra-thin frequency reconfigurable metamaterial is designed at different working frequencies of 14.1 MHz, 15 MHz, 16.2 MHz, 17.5 MHz, 19.3 MHz, 21.7 MHz and 25 MHz to enhance the magnetic field and power transfer efficiency (PTE) of the system. Frequency reconfigurable mechanism of the system with the frequency reconfigurable metamaterial is derived by the equivalent circuit theory. Finally, further measurement which verifies the simulation by reasonable agreement is carried out. PTE of the system by adding the metamaterial are 59%, 73%, 67%, 66%, 65%, 60% and 58% at different working frequencies. PTE of the system with and without the metamaterial is 72% and 49% at the distance of 120 mm and the frequency of 15 MHz, respectively.


2022 ◽  
Author(s):  
Wataru HIJIKATA ◽  
Toshiki Ohori ◽  
Xiang Li ◽  
Hideyuki Nakanishi ◽  
Shigeki Ozawa

Abstract Wireless power transfer via magnetic resonant coupling can be used to supply power to a mobile robot within a few meters of a transmitter coil. However, when the robot moves or its power consumption fluctuates, its input impedance varies and causes power reflection. Therefore, we propose the use of a driver coil on the transmitter side to match the input impedance. The input impedance is matched and power reflection is eliminated by regulating the coupling coefficient between the driver and the transmitter. During experiments, the transmitting efficiency showed good agreement with the calculated value, and the input impedance was matched under varying distances and load resistances. Therefore, the proposed system was demonstrated to solve the power reflection problem in mobile robots.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 115
Author(s):  
Jacek Maciej Stankiewicz ◽  
Agnieszka Choroszucho

This article presents the results of the proposed numerical and analytical analysis of the Wireless Power Transfer System (WPT). The system consists of a transmitting surface and a receiving surface, where each of them is composed of planar spiral coils. Two WPT systems were analysed (periodic and aperiodic) considering two types of coils (circular and square). In the aperiodic system, the adjacent coils were wound in the opposite direction. The influence of the type of coils, the winding direction, the number of turns, and the distance between the coils on the efficiency of the WPT system was compared. In periodic models, higher efficiency was obtained with circular rather than square coils. The results obtained with both proposed methods were consistent, which confirmed the correctness of the adopted assumptions. In aperiodic models, for a smaller radius of the coil, the efficiency of the system was higher in the square coil models than in the circular coil models. On the other hand, with a larger radius of the coil, the efficiency of the system was comparable regardless of the coil type. When comparing both systems (periodic and aperiodic), for both circular and square coils, aperiodic models show higher efficiency values (the difference is even 57%). The proposed system can be used for simultaneous charging of many sensors (located in, e.g., walls, floors).


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8074
Author(s):  
Guilherme Germano Buchmeier ◽  
Alexandru Takacs ◽  
Daniela Dragomirescu ◽  
Juvenal Alarcon Ramos ◽  
Amaia Fortes Montilla

This paper proposes a method for optimizing and designing a wireless power transfer system operating at 13.56 MHz. It can be used as guidelines for designing coils for the new-trending technology that enables NFC devices to not only to communicate but also to charge. Since NFC wireless charging is an emerging technology, it is of interest to propose optimizations and a dedicated circuit design for such systems. This work proposes an optimization procedure to calculate the dimensions of a transmitter and receiver pair that assures the highest efficiency while considering all possible positions of a receiver that is placed on a desired surface. This procedure seeks to facilitate and automate the design of rectangular-shaped coils, whereas the literature proposes mainly square-shaped coils. Afterwards, a circuit analysis was conducted, and the series-parallel compensation network is proposed as the most promising topology of the receiver to assure a low efficiency sensibility to load variations for 13.56 MHz wireless power transfer systems. A pair of optimized transmitter and receiver coils is prototyped, and the experimental results are tested against the theory. The transmitter of 7 cm×11.4 cm and receiver of 4 cm ×4 cm are separated by 10 mm. The receiver can move on a surface of 8 cm ×12 cm and the load can vary from 36 Ω to 300 Ω while assuring a minimum and maximum efficiency of 80% and 88.3%, respectively.


2021 ◽  
Vol 141 (12) ◽  
pp. 985-994
Author(s):  
Hayato Sumiya ◽  
Osamu Shimizu ◽  
Sakahisa Nagai ◽  
Hiroshi Fujimoto ◽  
Shimpei Takita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document