scholarly journals Discovery of a hot, transiting, Earth-sized planet and a second temperate, non-transiting planet around the M4 dwarf GJ 3473 (TOI-488)

2020 ◽  
Vol 642 ◽  
pp. A236
Author(s):  
J. Kemmer ◽  
S. Stock ◽  
D. Kossakowski ◽  
A. Kaminski ◽  
K. Molaverdikhani ◽  
...  

We present the confirmation and characterisation of GJ 3473 b (G 50–16, TOI-488.01), a hot Earth-sized planet orbiting an M4 dwarf star, whose transiting signal (P = 1.1980035 ± 0.0000018 d) was first detected by the Transiting Exoplanet Survey Satellite (TESS). Through a joint modelling of follow-up radial velocity observations with CARMENES, IRD, and HARPS together with extensive ground-based photometric follow-up observations with LCOGT, MuSCAT, and MuSCAT2, we determined a precise planetary mass, Mb = 1.86 ± 0.30 M⊕, and radius, Rb = 1.264 ± 0.050 R⊕. Additionally, we report the discovery of a second, temperate, non-transiting planet in the system, GJ 3473 c, which has a minimum mass, Mc sin i = 7.41 ± 0.91 M⊕, and orbital period, Pc = 15.509 ± 0.033 d. The inner planet of the system, GJ 3473 b, is one of the hottest transiting Earth-sized planets known thus far, accompanied by a dynamical mass measurement, which makes it a particularly attractive target for thermal emission spectroscopy.

2020 ◽  
Vol 498 (3) ◽  
pp. 4503-4517
Author(s):  
M Fridlund ◽  
J Livingston ◽  
D Gandolfi ◽  
C M Persson ◽  
K W F Lam ◽  
...  

ABSTRACT We report the discovery of a planetary system orbiting TOI-763(aka CD-39 7945), a V = 10.2, high proper motion G-type dwarf star that was photometrically monitored by the TESS space mission in Sector 10. We obtain and model the stellar spectrum and find an object slightly smaller than the Sun, and somewhat older, but with a similar metallicity. Two planet candidates were found in the light curve to be transiting the star. Combining TESS transit photometry with HARPS high-precision radial velocity (RV) follow-up measurements confirm the planetary nature of these transit signals. We determine masses, radii, and bulk densities of these two planets. A third planet candidate was discovered serendipitously in the RV data. The inner transiting planet, TOI-763 b, has an orbital period of Pb  =  5.6 d, a mass of Mb  =  9.8 ± 0.8 M⊕, and a radius of Rb  =  2.37 ± 0.10 R⊕. The second transiting planet, TOI-763 c, has an orbital period of Pc  =  12.3 d, a mass of Mc  =  9.3 ± 1.0 M⊕, and a radius of Rc  =  2.87 ± 0.11 R⊕. We find the outermost planet candidate to orbit the star with a period of ∼48 d. If confirmed as a planet, it would have a minimum mass of Md  =  9.5 ± 1.6 M⊕. We investigated the TESS light curve in order to search for a mono transit by planet d without success. We discuss the importance and implications of this planetary system in terms of the geometrical arrangements of planets orbiting G-type stars.


ACS Photonics ◽  
2019 ◽  
Vol 6 (6) ◽  
pp. 1506-1514 ◽  
Author(s):  
Franziska B. Barho ◽  
Fernando Gonzalez-Posada ◽  
Mario Bomers ◽  
Aude Mezy ◽  
Laurent Cerutti ◽  
...  

2001 ◽  
Vol 106 (E7) ◽  
pp. 14711-14732 ◽  
Author(s):  
Michael B. Wyatt ◽  
Victoria E. Hamilton ◽  
Harry Y. McSween ◽  
Philip R. Christensen ◽  
Lawrence A. Taylor

2012 ◽  
Vol 5 (4) ◽  
pp. 4599-4633 ◽  
Author(s):  
A. Krueger ◽  
W. Stremme ◽  
R. Harig ◽  
M. Grutter

Abstract. The technique for measuring two-dimensional (2-D) plumes of volcanic gases with thermal emission spectroscopy was described in Part 1 by Stremme et al. (2012). In that paper the instrumental aspects as well as retrieval strategies for obtaining the slant column images of SO2 and SiF4, as well as animations of particular events observed at the Popocatépetl volcano, were presented. This work focuses on the procedures for determining the propagation speed of the gases and estimating an emission flux from the given image sequences. A 2-D column density distribution of a volcanic gas, available as time-consecutive frames, provides information of a wind-field and the average velocity at which the volcanic plume is propagating. The presented reconstruction method solves the equation of continuity as an ill-posed problem using mainly a Tikhonov-like regularization. It is observed from the available data sets that if the main direction of propagation is perpendicular to the line-of-sight, the algorithm works well for SO2 which has the strongest signals, and also for SiF4 in some favourable cases. Due to the similarity of the algorithm used here with the reconstruction methods used for profile retrievals based on optimal estimation theory, diagnostic tools like the averaging kernels can be calculated analogously and the information can be quantified as degrees of freedom. Thus, it is shown that the combination of wind-field and column distribution of the gas plume can provide the emission flux of the volcano both during day and night.


Sign in / Sign up

Export Citation Format

Share Document