planetary system
Recently Published Documents


TOTAL DOCUMENTS

773
(FIVE YEARS 144)

H-INDEX

53
(FIVE YEARS 9)

2022 ◽  
Vol 163 (2) ◽  
pp. 53
Author(s):  
Nicholas Saunders ◽  
Samuel K. Grunblatt ◽  
Daniel Huber ◽  
Karen A. Collins ◽  
Eric L. N. Jensen ◽  
...  

Abstract While the population of confirmed exoplanets continues to grow, the sample of confirmed transiting planets around evolved stars is still limited. We present the discovery and confirmation of a hot Jupiter orbiting TOI-2184 (TIC 176956893), a massive evolved subgiant (M ⋆ = 1.53 ± 0.12 M ⊙, R ⋆ = 2.90 ± 0.14 R ⊙) in the Transiting Exoplanet Survey Satellite (TESS) Southern Continuous Viewing Zone. The planet was flagged as a false positive by the TESS Quick-Look Pipeline due to periodic systematics introducing a spurious depth difference between even and odd transits. Using a new pipeline to remove background scattered light in TESS Full Frame Image data, we combine space-based TESS photometry, ground-based photometry, and ground-based radial velocity measurements to report a planet radius of R p = 1.017 ± 0.051 R J and mass of M p = 0.65 ± 0.16 M J . For a planet so close to its star, the mass and radius of TOI-2184b are unusually well matched to those of Jupiter. We find that the radius of TOI-2184b is smaller than theoretically predicted based on its mass and incident flux, providing a valuable new constraint on the timescale of post-main-sequence planet inflation. The discovery of TOI-2184b demonstrates the feasibility of detecting planets around faint (TESS magnitude > 12) post-main-sequence stars and suggests that many more similar systems are waiting to be detected in the TESS FFIs, whose confirmation may elucidate the final stages of planetary system evolution.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Tingqiong Cui ◽  
Yinong Li ◽  
Chenglin Zan ◽  
Yuanchang Chen

In the vehicle composite planetary gear transmission system, nonlinear excitations such as time-varying meshing stiffness, backlash and comprehensive error would lead to large vibration and noise, uneven load distribution, unstable operation and other problems. To address these issues, this work focuses on compound planetary gears and develops the bending-torsion coupling nonlinear dynamic model of the system based on the Lagrange equation. There are internal and external multi-source excitations applied to the system. This model is used to study the bending-torsion coupling meshing deformation relationship of each meshing pair along with the translational and torsional directions. The natural frequencies and vibration modal characteristics of the system are extracted from the model, and the influence of rotational inertia and meshing stiffness on the inherent characteristics of the system are studied. The coupling vibration characteristics of the system under operating condition are analyzed in terms of the inherent characteristics and time–frequency characteristics of the system. The simulation results exhibit that the planetary gear system has three modes. The change in natural frequency trajectory has two phenomena: modal transition and trajectory intersection. The main frequencies include engine rotating frequency, meshing frequency and its double frequency, and the rotation frequency and harmonic frequency of the engine have a great influence on the vibration response of the system. Finally, the virtual prototype of the composite planetary system is used to verify the accuracy of the established model from speed, inherent characteristics, meshing force and frequency composition.


Author(s):  
Raymond T. Pierrehumbert

Planetary Systems: A Very Short Introduction takes the reader on a journey through time and space, exploring how planetary systems such as ours form and evolve, and the conditions under which life may arise. Not long ago, the Solar System was the only example of a planetary system that we knew. Now, we know of thousands of planetary systems, and have even been able to observe the moment of their birth. This VSI reveals the astonishing variety of planetary systems out there. It explores the insights gained about these other worlds from a new generation of telescopes.


2021 ◽  
Vol 162 (6) ◽  
pp. 290
Author(s):  
Jean-Baptiste Ruffio ◽  
Quinn M. Konopacky ◽  
Travis Barman ◽  
Bruce Macintosh ◽  
Kielan K. W. Hoch ◽  
...  

Abstract The four directly imaged planets orbiting the star HR 8799 are an ideal laboratory to probe atmospheric physics and formation models. We present more than a decade’s worth of Keck/OSIRIS observations of these planets, which represent the most detailed look at their atmospheres to date by its resolution and signal-to-noise ratio. We present the first direct detection of HR 8799 d, the second-closest known planet to the star, at moderate spectral resolution with Keck/OSIRIS (K band; R ≈ 4000). Additionally, we uniformly analyze new and archival OSIRIS data (H and K band) of HR 8799 b, c, and d. First, we show detections of water (H2O) and carbon monoxide (CO) in the three planets and discuss the ambiguous case of methane (CH4) in the atmosphere of HR 8799 b. Then, we report radial-velocity (RV) measurements for each of the three planets. The RV measurement of HR 8799 d is consistent with predictions made assuming coplanarity and orbital stability of the HR 8799 planetary system. Finally, we perform a uniform atmospheric analysis on the OSIRIS data, published photometric points, and low-resolution spectra. We do not infer any significant deviation from the stellar value of the carbon-to-oxygen ratio (C/O) of the three planets, which therefore does not yet yield definitive information about the location or method of formation. However, constraining the C/O for all the HR 8799 planets is a milestone for any multiplanet system, and particularly important for large, widely separated gas giants with uncertain formation processes.


2021 ◽  
Vol 923 (1) ◽  
pp. 90
Author(s):  
Carl Melis ◽  
Johan Olofsson ◽  
Inseok Song ◽  
Paula Sarkis ◽  
Alycia J. Weinberger ◽  
...  

Abstract We present a detailed characterization of the extremely dusty main-sequence star TYC 8830 410 1. This system hosts inner planetary system dust (T dust ≈ 300 K) with a fractional infrared luminosity of ∼1%. Mid-infrared spectroscopy reveals a strong, mildly crystalline solid-state emission feature. TYC 8830 410 1 (spectral type G9 V) has a 49.5″ separation M4-type companion comoving and co-distant with it, and we estimate a system age of ∼600 Myr. TYC 8830 410 1 also experiences “dipper”-like dimming events as detected by the All-Sky Automated Survey for Supernovae, Transiting Exoplanet Survey Satellite, and characterized in more detail with the Las Cumbres Observatory Global Telescope. These recurring eclipses suggest at least one roughly star-sized cloud of dust orbits the star in addition to assorted smaller dust structures. The extreme properties of the material orbiting TYC 8830 410 1 point to dramatic dust-production mechanisms that likely included something similar to the giant impact event thought to have formed the Earth–Moon system, although hundreds of millions of years after such processes are thought to have concluded in the solar system. TYC 8830 410 1 holds promise to deliver significant advances in our understanding of the origin, structure, and evolution of extremely dusty inner planetary systems.


2021 ◽  
Vol 923 (1) ◽  
pp. 91
Author(s):  
Sana Ahmed ◽  
Kinsuk Acharyya

Abstract Comet 2I/Borisov is the first interstellar comet observed in the solar system, providing a unique opportunity to understand the physical conditions that prevailed in a distant unknown planetary system. Observations of the comet show that the CO/H2O ratio is higher than that observed in solar system comets at a heliocentric distance r h < 2.5 au. We aim to study the gas-phase coma of comet 2I/Borisov using a multifluid chemical-hydrodynamical model. The gas-phase model includes a host of chemical reactions, with the neutrals, ions, and electrons treated as three separate fluids. Energy exchange between the three fluids due to elastic and inelastic scattering and radiative losses are also considered. Our model results show that in the region of the coma beyond ∼100 km of the nucleus, e−−CO inelastic collisions leading to vibrational excitation of CO causes a loss of energy from the electron fluid. We find a high abundance of CO+ and HCO+ ions, and we show how these two ions affect the creation/destruction rates of other ions such as H2O+, H3O+, N-bearing ions, and large organic ions. We find that the presence of CO leads to a higher abundance of large organic ions and neutrals such as CH 3 OH 2 + , CH 3 OCH 4 + , and CH3OCH3, as compared to a typical H2O-rich solar system comet. We conclude that the presence of a large amount of CO in the coma of comet 2I/Borisov, combined with a low production rate, affects the coma temperature profile and flux of major ionic species significantly.


Author(s):  
E. González-Álvarez ◽  
M. R. Zapatero Osorio ◽  
J. Sanz-Forcada ◽  
J. A. Caballero ◽  
S. Reffert ◽  
...  
Keyword(s):  

Author(s):  
John B West

As earthlings, we take the oxygen in the air that we breathe for granted. Few people realize that this easy access to oxygen makes us unique in the whole universe. Nowhere else in our planetary system or in distant stars has stable oxygen ever been detected. However, the present plentiful supply of oxygen in our atmosphere was not always there. Long after the earth was formed some 4.5 billion years ago, the PO2 in the atmosphere was near zero, and it remained so for millions of years. But about 2 billion years ago, the PO2 dramatically increased to as high as 200 mmHg during the Great Oxygen Event, due to the activity of microorganisms, the cyanobacteria. Subsequently the oxygen level fell to the intermediate values that we have today. Here we also look to the future, for example, the next 50 years. This period will be special because it will include the beginnings of human space exploration, initially to the Moon and Mars. Neither of these has atmospheric oxygen. Nevertheless, plans to visit and live on both of these are developing rapidly. We consider the fascinating problems of how to how to ensure that sufficient oxygen will be available for groups of people . While it is interesting to discuss these issues now, we can expect that major advances will be made in the next few years.


Sign in / Sign up

Export Citation Format

Share Document