volcanic plume
Recently Published Documents


TOTAL DOCUMENTS

317
(FIVE YEARS 118)

H-INDEX

34
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Mathieu Lachatre ◽  
Sylvain Mailler ◽  
Laurent Menut ◽  
Arineh Cholakian ◽  
Pasquale Sellitto ◽  
...  

Abstract. Volcanic activity is an important source of atmospheric sulphur dioxide (SO2), which, after conversion into sulphuric acid, induces impacts on, among others, rain acidity, human health, meteorology and the radiative balance of the atmosphere. This work focuses on the conversion of SO2 into sulphates (, S(+VI)) in the mid-tropospheric volcanic plume emitted by the explosive eruption of Mount Etna (Italy) on Apr. 12, 2012, using the CHIMERE chemistry-transport model. Since volcanic plume location and composition depend on several often poorly constrained parameters, using a chemistry-transport model allows us to study the sensitivity of SO2 oxidation to multiple aspects such as volcanic water emissions, transition metal emissions, plume diffusion and plume altitude. Our results show that in the mid-troposphere, two pathways contribute to sulphate production, the oxidation of SO2 by OH in the gaseous phase (70 %), and the aqueous oxidation by O2 catalyzed by Mn2+ and Fe3+ ions (25 %). The oxidation in aqueous phase is the faster process, but in the mid-troposphere, liquid water is scarce, therefore the relative share of gaseous oxidation can be important. After one day in the mid-troposphere, about 0.5 % of the volcanic SO2 was converted to sulphates through the gaseous process. Because of the nonlinear dependency of the kinetics in the aqueous phase to the amount of volcanic water emitted and on the availability of transition metals in the aqueous phase, several experiments have been designed to determine the prominence of different parameters. Our simulations show that during the short time that liquid water remains in the plume, around 0.4 % of sulphates manage to quickly enter the liquid phase. Sensitivity tests regarding the advection scheme have shown that this scheme must be chosen wisely, as dispersion will impact both oxidation pathways explained above.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 15
Author(s):  
Somayeh Arghavani ◽  
Clémence Rose ◽  
Sandra Banson ◽  
Aurelia Lupascu ◽  
Mathieu Gouhier ◽  
...  

We investigated the role of the passive volcanic plume of Mount Etna (Italy) in the formation of new particles in the size range of 2.5–10 nm through the gas-to-particle nucleation of sulfuric acid (H2SO4) precursors, formed from the oxidation of SO2, and their evolution to particles with diameters larger than 100 nm. Two simulations were performed using the Weather Research and Forecasting Model coupled with chemistry (WRF-Chem) under the same configuration, except for the nucleation parameterization implemented in the model: the activation nucleation parameterization (JS1 = 2.0 × 10−6 × (H2SO4)) in the first simulation (S1) and a new parameterization for nucleation (NPN) (JS2 = 1.844 × 10−8 × (H2SO4)1.12) in the second simulation (S2). The comparison of the numerical results with the observations shows that, on average, NPN improves the performance of the model in the prediction of the H2SO4 concentrations, newly-formed particles (~2.5–10 nm), and their growth into larger particles (10–100 nm) by decreasing the rates of H2SO4 consumption and nucleation relative to S1. In addition, particles formed in the plume do not grow into cloud condensation nuclei (CCN) sizes (100–215 nm) within a few hours of the vent (tens of km). However, tracking the size evolution of simulated particles along the passive plume indicates the downwind formation of particles larger than 100 nm more than 100 km far from the vent with relatively high concentrations relative to the background (more than 1500 cm−3) in S2. These particles, originating in the volcanic source, could affect the chemical and microphysical properties of clouds and exert regional climatic effects over time.


2021 ◽  
Vol 17 (6) ◽  
pp. 2607-2632
Author(s):  
Christopher Garrison ◽  
Christopher Kilburn ◽  
David Smart ◽  
Stephen Edwards

Abstract. One of the largest climate forcing eruptions of the nineteenth century was, until recently, believed to have taken place at the Babuyan Claro volcano, in the Philippines, in 1831. However, a recent investigation found no reliable evidence of such an eruption, suggesting that the 1831 eruption must have taken place elsewhere. We here present our newly compiled dataset of reported observations of a blue, purple and green sun in August 1831, which we use to reconstruct the transport of a stratospheric aerosol plume from that eruption. The source of the aerosol plume is identified as the eruption of Ferdinandea, which took place about 50 km off the south-west coast of Sicily (37.1∘ N, 12.7∘ E), in July and August 1831. The modest magnitude of this eruption, assigned a volcanic explosivity index (VEI) of 3, has commonly caused it to be discounted or overlooked when identifying the likely source of the stratospheric sulfate aerosol in 1831. It is proposed, however, that convective instability in the troposphere contributed to aerosol reaching the stratosphere and that the aerosol load was enhanced by addition of a sedimentary sulfur component to the volcanic plume. Thus, one of the largest climate forcing volcanic eruptions of the nineteenth century would effectively have been hiding in plain sight, arguably “lowering the bar” for the types of eruptions capable of having a substantial climate forcing impact. Prior estimates of the mass of stratospheric sulfate aerosol responsible for the 1831 Greenland ice core sulfate deposition peaks which have assumed a source eruption at a low-latitude site will, therefore, have been overstated. The example presented in this paper serves as a useful reminder that VEI values were not intended to be reliably correlated with eruption sulfur yields unless supplemented with compositional analyses. It also underlines that eye-witness accounts of historical geophysical events should not be neglected as a source of valuable scientific data.


2021 ◽  
Author(s):  
Ellen Bräutigam ◽  
Nicole Bobrowski ◽  
Jonas Kuhn ◽  
Maja Rüth ◽  
Christopher Fuchs ◽  
...  

<p>Volcanic plumes contain traces of bromine monoxide, BrO, which catalyze destruction of ozone, O<sub>3</sub>, mixed into the plume. Therefore, local depletion of O<sub>3 </sub>in the plume could be possible. However, calculations comparing mixing with the rate of O<sub>3 </sub>destruction suggest that no significant decline in the O<sub>3</sub> concentration should be expected. On the other hand several studies at different volcanoes have found varying degrees of O<sub>3</sub> depletion inside the plume. So far, ozone and its concentration distribution in volcanic plumes have only been insufficiently determined. Reliable ozone measurements would make a decisive contribution to the understanding of volcanic plume chemistry.</p> <p>The standard technique for ambient O<sub>3</sub> monitoring is the short-path ultraviolet (UV) absorption instrument. But in volcanic plumes this technique suffers from strong interference of the overlapping SO<sub>2</sub> absorption features in the UV. SO<sub>2</sub> is one of the major compounds in volcanic plumes.</p> <p>We want to overcome this problem by relying on the chemiluminescence (CL) reaction between ozone and ethene, a standard technique for O<sub>3</sub> measurement in the 1970s and 1980s, which we found to have no interference from trace gases abundant in volcanic plumes. The key component of a CL O<sub>3</sub>-instrument is a reaction chamber, where ethene is mixed into the ambient air and a photomultiplier tube detects the resulting photons.</p> <p>Field measurements with existing CL O<sub>3</sub>-monitors are complicated, because they are usually heavy and bulky. Therefore we designed a more compact and lightweight version (10 kg backpack size CL instrument), which was used in a field study at Mount Etna. However, the campaign was restricted to plumes that are pushed down to ground in areas accessible by foot.</p> <p>Here we report on a further improved version of the instrument weighing around 1 kg, which we can mount onto a drone to carry it into the plume. In particular, we describe the design advances making the reduction in weight and size possible.</p>


2021 ◽  
Author(s):  
Maria-Elissavet Koukouli ◽  
Konstantinos Michailidis ◽  
Pascal Hedelt ◽  
Isabelle A. Taylor ◽  
Antje Inness ◽  
...  

Abstract. Volcanic eruptions eject large amounts of ash and trace gases such as sulphur dioxide (SO2) into the atmosphere. A significant difficulty in mitigating the impact of volcanic SO2 clouds on air traffic safety is that these gas emissions can be rapidly transported over long distances. The use of space-borne instruments enables the global monitoring of volcanic SO2 emissions in an economical and risk-free manner. Within the European Space Agency (ESA) Sentinel-5p+ Innovation project, the S5P SO2 Layer Height (S5P+I: SO2 LH) activities led to the improvements on the retrieval algorithm and generation of the corresponding near-real-time S5P SO2 LH products. These are currently operationally provided, in near-real-time, by the German Aerospace Center (DLR) in the framework of the Innovative Products for Analyses of Atmospheric Composition, INPULS, project. The main aim of this paper is to present its extensive verification, accomplished within the S5P+I: SO2 LH project, over major recent volcanic eruptions, against collocated space-born measurements from the IASI/Metop and CALIOP/CALIPSO instruments, as well as assess its impact on the forecasts provided by the Copernicus Atmospheric Monitoring Service, CAMS. The mean difference between S5P and IASI observations for the Raikoke 2019, the Nishinoshima 2020 and the La Soufrière-St Vincent, 2021 eruptive periods is ~0.5 ± 3 km, while for the Taal 2020 eruption, a larger difference was found, between 3 and 4 ± 3 km. The comparison of the daily mean SO2 layer heights further demonstrates the capabilities of this near-real-time product, with slopes between 0.8 and 1 and correlations ranging between 0.6 and 0.8. Comparisons between the S5P+I: SO2 LH and the CALIOP/CALIPSO ash plume height are also satisfactory at −2.5 ± 2 km, considering that the injected SO2 and ash plumes’ locations do not always coincide over an eruption. Furthermore, the CAMS assimilation of the S5P+I: SO2 LH product led to much improved model output against the non-assimilated IASI layer heights, with a mean difference of 1.5 ± 2 km compared to the original CAMS analysis, and improved the geographical spread of the Raikoke volcanic plume following the eruptive days.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1573
Author(s):  
Rachel Pelley ◽  
David Thomson ◽  
Helen Webster ◽  
Michael Cooke ◽  
Alistair Manning ◽  
...  

We present a Bayesian inversion method for estimating volcanic ash emissions using satellite retrievals of ash column load and an atmospheric dispersion model. An a priori description of the emissions is used based on observations of the rise height of the volcanic plume and a stochastic model of the possible emissions. Satellite data are processed to give column loads where ash is detected and to give information on where we have high confidence that there is negligible ash. An atmospheric dispersion model is used to relate emissions and column loads. Gaussian distributions are assumed for the a priori emissions and for the errors in the satellite retrievals. The optimal emissions estimate is obtained by finding the peak of the a posteriori probability density under the constraint that the emissions are non-negative. We apply this inversion method within a framework designed for use during an eruption with the emission estimates (for any given emission time) being revised over time as more information becomes available. We demonstrate the approach for the 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions. We apply the approach in two ways, using only the ash retrievals and using both the ash and clear sky retrievals. For Eyjafjallajökull we have compared with an independent dataset not used in the inversion and have found that the inversion-derived emissions lead to improved predictions.


2021 ◽  
Author(s):  
◽  
Céline Mandon

<p>Volcanic gases observed at active volcanoes originate from the magma at depth. These volatiles exsolve as a result of decompression, crystallization and cooling of the silicate melt. The transport of metals in a magmatic volatile phase arises from complexation with the main volatile species, sulfur and halides. Composition of the magma, temperature, pressure and redox state have thus strong implications on metal mobility in these environments. Moreover, a variety of interactions and phase separations can affect these fluids after exsolution from the parental magma. This thesis aims at constraining the volatile transport of trace metals at White Island, a subduction-related magmatic-hydrothermal system, through a characterization and metal budget of the magmatic reservoir and the different atmospheric discharges.  The metal content of the reservoir, as well as the effects of degassing and magma mixing on the magma are explored through the study of ejecta from the 1976-2000 eruptive cycle. CO₂, SO₂ and H₂O are degassing from a mafic melt at ~ 5 km depth, regularly feeding a shallower and evolved reservoir at ~ 800 m. Average contents of 164 ppm of Cu, 73 ppm of Zn, 12 ppm of Pb and 0.4 ppm of Au and Ag were detected in melt inclusions. A fraction of these metals partition into the exsolving aqueous fluid. Onset of magnetite crystallization may trigger exsolution of sulphide melt, found to contain around 30 wt% of Cu, and as much as 36 wt% Ni, 21 wt% Ag, 0.10 wt% Au in small inclusions, representing a considerable source of metals available for an aqueous fluid phase upon resorption.  The volatile transport of metals is indicated by their enrichment in a variety of discharges at the surface. The hyperacidic waters of the crater lake absorb metals from the magmatic gases injected at subaqueous vents. Concentrations of ~ 12 ppm of As and Zn, 6 ppm of Cu and Pb were observed. Hydrolysis of the host rock by the reactive waters is responsible for the high cation contents of the fluids. Precipitation of secondary minerals such as silica, anhydrite, gypsum, sulfur and alunite occurs within and underneath the crater lake. The predicted speciation of metals greatly varies, dominated by CuI and FeII chloride complexes in the more reduced environment at the lake bottom, whereas CuII and FeIII are stable in the oxidized surficial waters. Arsenic is mainly present as As(OH)₃ at depth, with H₃AsO₄ dominating at the surface. Ag, Pb and Zn are complexed with chloride, and are not redox dependent. The presence of a body of molten sulfur at the bottom of the lake is indicated by sulfur spherules, both floating at the lake surface and in sediments. Pyrite crystals coat the surface of some globules, and chemical analyses reveal an enrichment in a variety of chalcophile metals (Tl, Sb, Bi, Au, As, Ag. Re, Cu).  The volcanic gases emitted at fumaroles are enriched in metals compared to the magma. The effective transport of Se, Te, Sb, B, Au, As, and Bi is indicated by enrichment factors larger than 1000. In contrast, Cu is relatively depleted, suggesting deposition in the subsurface environment. Variations in composition are observed with time, mainly depending on temperature and major composition of the emissions. Values > 100 ppb of Sb, Bi, Ni, Zn, As and Se, > 10 ppb of Te, Pb, and Cu, and up to 8 ppb of Tl were recorded. Chloride is predicted to be the main ligand responsible for metal transport, even at higher temperature. The lack of thermodynamic data for complex solvated metal clusters may nevertheless bias our results. The low temperature of the studied fumaroles (maximum 192.5 °C) is in accordance with the small abundance of sulfides in the sublimates, whereas the high proportion of sulfates indicates oxidized conditions.  The volcanic plume is enriched in metals such as Bi, Cd, Tl, Se, Te and Sb. The most common particles emitted are sulfates, halides, silicates, sulphuric acid and Zn ± Cu oxides. Metal emission rates are in the range of 1-10 kg/day for As, Se, Cu and Zn, 0.1-1 kg/day for Pb, Tl and Bi. Emissions of high-temperature magmatic gases are indicated by elevated SO₂/HCl ratio and the presence of Au in the particulate phase.  Mass balance calculations in White Island magmatic-hydrothermal system indicate a segregation of around 4900 tons of copper per year, either accumulated from a dense brine at ~ 500 m depth, or deposited by low-density vapors on their way to the surface. Metal-rich sulfide blebs trapped in phenocrysts may also retain Cu at depth. These results thus reinforce the belief that White Island is an actively forming porphyry copper deposit.</p>


2021 ◽  
Author(s):  
◽  
Céline Mandon

<p>Volcanic gases observed at active volcanoes originate from the magma at depth. These volatiles exsolve as a result of decompression, crystallization and cooling of the silicate melt. The transport of metals in a magmatic volatile phase arises from complexation with the main volatile species, sulfur and halides. Composition of the magma, temperature, pressure and redox state have thus strong implications on metal mobility in these environments. Moreover, a variety of interactions and phase separations can affect these fluids after exsolution from the parental magma. This thesis aims at constraining the volatile transport of trace metals at White Island, a subduction-related magmatic-hydrothermal system, through a characterization and metal budget of the magmatic reservoir and the different atmospheric discharges.  The metal content of the reservoir, as well as the effects of degassing and magma mixing on the magma are explored through the study of ejecta from the 1976-2000 eruptive cycle. CO₂, SO₂ and H₂O are degassing from a mafic melt at ~ 5 km depth, regularly feeding a shallower and evolved reservoir at ~ 800 m. Average contents of 164 ppm of Cu, 73 ppm of Zn, 12 ppm of Pb and 0.4 ppm of Au and Ag were detected in melt inclusions. A fraction of these metals partition into the exsolving aqueous fluid. Onset of magnetite crystallization may trigger exsolution of sulphide melt, found to contain around 30 wt% of Cu, and as much as 36 wt% Ni, 21 wt% Ag, 0.10 wt% Au in small inclusions, representing a considerable source of metals available for an aqueous fluid phase upon resorption.  The volatile transport of metals is indicated by their enrichment in a variety of discharges at the surface. The hyperacidic waters of the crater lake absorb metals from the magmatic gases injected at subaqueous vents. Concentrations of ~ 12 ppm of As and Zn, 6 ppm of Cu and Pb were observed. Hydrolysis of the host rock by the reactive waters is responsible for the high cation contents of the fluids. Precipitation of secondary minerals such as silica, anhydrite, gypsum, sulfur and alunite occurs within and underneath the crater lake. The predicted speciation of metals greatly varies, dominated by CuI and FeII chloride complexes in the more reduced environment at the lake bottom, whereas CuII and FeIII are stable in the oxidized surficial waters. Arsenic is mainly present as As(OH)₃ at depth, with H₃AsO₄ dominating at the surface. Ag, Pb and Zn are complexed with chloride, and are not redox dependent. The presence of a body of molten sulfur at the bottom of the lake is indicated by sulfur spherules, both floating at the lake surface and in sediments. Pyrite crystals coat the surface of some globules, and chemical analyses reveal an enrichment in a variety of chalcophile metals (Tl, Sb, Bi, Au, As, Ag. Re, Cu).  The volcanic gases emitted at fumaroles are enriched in metals compared to the magma. The effective transport of Se, Te, Sb, B, Au, As, and Bi is indicated by enrichment factors larger than 1000. In contrast, Cu is relatively depleted, suggesting deposition in the subsurface environment. Variations in composition are observed with time, mainly depending on temperature and major composition of the emissions. Values > 100 ppb of Sb, Bi, Ni, Zn, As and Se, > 10 ppb of Te, Pb, and Cu, and up to 8 ppb of Tl were recorded. Chloride is predicted to be the main ligand responsible for metal transport, even at higher temperature. The lack of thermodynamic data for complex solvated metal clusters may nevertheless bias our results. The low temperature of the studied fumaroles (maximum 192.5 °C) is in accordance with the small abundance of sulfides in the sublimates, whereas the high proportion of sulfates indicates oxidized conditions.  The volcanic plume is enriched in metals such as Bi, Cd, Tl, Se, Te and Sb. The most common particles emitted are sulfates, halides, silicates, sulphuric acid and Zn ± Cu oxides. Metal emission rates are in the range of 1-10 kg/day for As, Se, Cu and Zn, 0.1-1 kg/day for Pb, Tl and Bi. Emissions of high-temperature magmatic gases are indicated by elevated SO₂/HCl ratio and the presence of Au in the particulate phase.  Mass balance calculations in White Island magmatic-hydrothermal system indicate a segregation of around 4900 tons of copper per year, either accumulated from a dense brine at ~ 500 m depth, or deposited by low-density vapors on their way to the surface. Metal-rich sulfide blebs trapped in phenocrysts may also retain Cu at depth. These results thus reinforce the belief that White Island is an actively forming porphyry copper deposit.</p>


2021 ◽  
Vol 13 (20) ◽  
pp. 4037
Author(s):  
Umberto Rizza ◽  
Franck Donnadieu ◽  
Salvatore Magazu ◽  
Giorgio Passerini ◽  
Giuseppe Castorina ◽  
...  

The purpose of the present paper is to investigate the effects of variable eruption source parameters on volcanic plume transport in the Mediterranean basin after the paroxysm of Mount Etna on 23 November 2013. This paroxysm was characterized by a north-east transport of ash and gas, caused by a low-pressure system in northern Italy. It is evaluated here in a joint approach considering the WRF-Chem model configured with eruption source parameters (ESPs) obtained elaborating the raw data from the VOLDORAD-2B (V2B) Doppler radar system. This allows the inclusion of the transient and fluctuating nature of the volcanic emissions to accurately model the atmospheric dispersion of ash and gas. Two model configurations were considered: the first with the climax values for the ESP and the second with the time-varying ESP according to the time profiles of the mass eruption rate recorded by the V2B radar. It is demonstrated that the second configuration produces a considerably better comparison with satellite retrievals from different sensors platforms (Ozone Mapping and Profiler Suite, Meteosat Second-Generation Spinning Enhanced Visible and Infrared Imager, and Visible Infrared Imaging Radiometer Suite). In the context of volcanic ash transport dispersion modeling, our results indicate the need for (i) the use of time-varying ESP, and (ii) a joint approach between an online coupled chemical transport model like WRF-Chem and direct near-source measurements, such as those carried out by the V2B Doppler radar system.


2021 ◽  
Author(s):  
Thomas Aubry ◽  
Jamie Farquharson ◽  
Colin Rowell ◽  
Sebastian Watt ◽  
Virginie Pinel ◽  
...  

The impacts of volcanic eruptions on climate are increasingly well understood, but the mirror question of how climate changes affect volcanic systems and processes, which we term “climate-volcano impacts”, remains understudied. Accelerating research on this topic is critical in view of rapid climate change driven by anthropogenic activities. Over the last two decades, we have improved our understanding of how mass distribution on the Earth’s surface, in particular changes in ice and water distribution linked to glacial cycles, affects mantle melting, crustal magmatic processing and eruption rates. New hypotheses on the impacts of climate change on eruption processes have also emerged, including how eruption style and volcanic plume rise are affected by changing surface and atmospheric conditions, and how volcanic sulfate aerosol lifecycle, radiative forcing and climate impacts are modulated by background climate conditions. Future improvements in past climate reconstructions and current climate observations, volcanic eruption records and volcano monitoring, and numerical models will contribute to boost research on climate-volcano impacts. Important mechanisms remain to be explored, such as how changes in atmospheric circulation and precipitation will affect the volcanic ash lifecycle. Fostering a holistic and interdisciplinary approach to climate-volcano impacts is critical to gain a full picture of how ongoing climate changes may affect the environmental and societal impacts of volcanic activity.


Sign in / Sign up

Export Citation Format

Share Document