scholarly journals Spectropolarimetric measurements of the mean longitudinal magnetic field of chemically peculiar stars

2001 ◽  
Vol 365 (2) ◽  
pp. 118-127 ◽  
Author(s):  
F. Leone ◽  
G. Catanzaro
Author(s):  
J M Seach ◽  
S C Marsden ◽  
B D Carter ◽  
C Neiner ◽  
C P Folsom ◽  
...  

Abstract We present a spectropolarimetric magnetic snapshot survey of 55 stars which includes 53 F-type stars ranging from spectral types F0 to F9 plus 2 chemically peculiar stars β CrB, and δ Cap. We look for magnetic fields in stars spanning a range of effective temperatures where the transition from fossil to dynamo magnetic fields is believed to occur. High-resolution spectropolarimetry using circularly polarized spectra is used to look for a magnetic detection in the Stokes V profile, determine the mean longitudinal magnetic field (Bl), and to look for correlations with stellar parameters. Surface magnetic fields are detected on 14 F-stars, and present in every spectral class from F3V-F9V ranging in strength from 0.3 ± 0.1 G (36 UMa, F8V) to 8.3 ± 0.9 G (h Dra, F8V). Thus we find photospheric magnetic fields are present in stars as early as spectral type F3V with an outer convection zone thickness less than a few per cent of the stellar radius.


2018 ◽  
Vol 616 ◽  
pp. A77 ◽  
Author(s):  
D. M. Bowman ◽  
B. Buysschaert ◽  
C. Neiner ◽  
P. I. Pápics ◽  
M. E. Oksala ◽  
...  

Context. The physics of magnetic hot stars and how a large-scale magnetic field affects their interior properties is largely unknown. Few studies have combined high-quality observations and modelling of magnetic pulsating stars, known as magneto-asteroseismology, primarily because of the dearth of detected pulsations in stars with a confirmed and well-characterised large-scale magnetic field. Aims. We aim to characterise observational signatures of rotation and pulsation in chemically peculiar candidate magnetic stars using photometry from the K2 space mission. Thus, we identify the best candidate targets for ground-based, optical spectropolarimetric follow-up observations to confirm the presence of a large-scale magnetic field. Methods. We employed customised reduction and detrending tools to process the K2 photometry into optimised light curves for a variability analysis. We searched for the periodic photometric signatures of rotational modulation caused by surface abundance inhomogeneities in 56 chemically peculiar A and B stars. Furthermore, we searched for intrinsic variability caused by pulsations (coherent or otherwise) in the amplitude spectra of these stars. Results. The rotation periods of 38 chemically peculiar stars are determined, 16 of which are the first determination of the rotation period in the literature. We confirm the discovery of high-overtone roAp pulsation modes in HD 177765 and find an additional 3 Ap and Bp stars that show evidence of high-overtone pressure modes found in roAp stars in the form of possible Nyquist alias frequencies in their amplitude spectra. Furthermore, we find 6 chemically peculiar stars that show evidence of intrinsic variability caused by gravity or pressure pulsation modes. Conclusions. The discovery of pulsations in a non-negligible fraction of chemically peculiar stars make these stars high-priority targets for spectropolarimetric campaigns to confirm the presence of their expected large-scale magnetic field. The ultimate goal is to perform magneto-asteroseismology and probe the interior physics of magnetic pulsating stars.


1988 ◽  
Vol 132 ◽  
pp. 313-316
Author(s):  
Pierre. Didelon

The first results of magnetic field measurements are presented here for HD 187474, a slowly rotating Ap star. From resolved Zeeman pattern the strength of the field and its mean inclination were obtained. From differential magnetic broadening a second value of the field strength has been deduced, which is compatible with the previous one. The “Robinson” method has been tested and a good agreement is found between observed and calculated Zeeman broadening of FeII lines. This method can therefore certainly be used to measure the surface field in slow rotating chemically peculiar stars.


2004 ◽  
Vol 193 ◽  
pp. 439-442
Author(s):  
Jiří Kubát ◽  
Jiří Krtička

AbstractWe calculate hydrodynamic multicomponent models of radiatively driven winds in B type stars. Our wind models consist of four components, namely hydrogen, helium, accelerated ions, and electrons. We solve equations of continuity, motion, and energy for all components and we take into account mutual collisions. The resulting models show large heating caused by friction. Results of our calculations show that the explanation of helium chemical peculiarity by the helium decoupling from the mean wind is unlikely.


Sign in / Sign up

Export Citation Format

Share Document