stellar radius
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 34)

H-INDEX

9
(FIVE YEARS 6)

2021 ◽  
Vol 923 (1) ◽  
pp. 108
Author(s):  
Xinle Shang ◽  
Ang Li

Abstract We revisit the short-term post-glitch relaxation of the Vela 2000 glitch in the simple two-component model of the pulsar glitch by making use of the latest realistic equations of states from the microscopic Brueckner and the relativistic Brueckner theories for neutron stars, which can reconcile with the available astrophysical constraints. We show that to fit both the glitch size and the post-glitch jumps in frequency derivatives approximately 1 minute after the glitch, the mass of the Vela pulsar is necessarily small, and there may be demands for a stiff equation of state (which results in a typical stellar radius larger than ∼12.5 km) and a strong suppression of the pairing gap in the nuclear medium. We discuss the implications of this result on the understanding of pulsar glitches.


2021 ◽  
Vol 162 (6) ◽  
pp. 269
Author(s):  
Cam Buzard ◽  
Danielle Piskorz ◽  
Alexandra C. Lockwood ◽  
Geoffrey Blake ◽  
Travis S. Barman ◽  
...  

Abstract We reanalyze the multiepoch direct detections of HD 88133 b and ups And b that were published in Piskorz et al. (2016) and Piskorz et al. (2017), respectively. Using simulations to attempt to reproduce the detections, we find that with the six and seven L-band Keck/NIRSPEC epochs analyzed in the original works, the planets would not have been detectable unless they had unreasonably large radii. HD88133 and ups And both have fairly large stellar radii, which contributed to the difficulty in detecting the planets. We take this opportunity to consider how these planets may have been detectable with the small number of epochs originally presented by running simulations both with the upgraded NIRSPEC instrument and with near-zero primary velocities, as recommended by Buzard et al. (2021). While seven L-band NIRSPEC2.0 epochs with near-zero primary velocities would have allowed a strong (10.8σ) detection of ups And b, many more than six L-band epochs would have been required for a strong detection of HD88133b, which could be due in part to both this system’s large stellar radius and low stellar temperature. This work stresses the importance of careful analytic procedures and the usefulness of simulations in understanding the expected sensitivity of high-resolution spectroscopic data.


2021 ◽  
Vol 922 (1) ◽  
pp. 90
Author(s):  
Zhiwei Chen ◽  
Wei Sun ◽  
Rolf Chini ◽  
Martin Haas ◽  
Zhibo Jiang ◽  
...  

Abstract We report the discovery of a massive protostar M17 MIR embedded in a hot molecular core in M17. The multiwavelength data obtained during 1993–2019 show significant mid-IR (MIR) variations, which can be split into three stages: the decreasing phase during 1993.03–mid-2004, the quiescent phase from mid-2004 to mid-2010, and the rebrightening phase from mid-2010 until now. The variation of the 22 GHz H2O maser emission, together with the MIR variation, indicates an enhanced disk accretion rate onto M17 MIR during the decreasing and rebrightening phases. Radiative transfer modeling of the spectral energy distributions of M17 MIR in the 2005 epoch (quiescent) and 2017 epoch (accretion outburst) constrains the basic stellar parameters of M17 MIR, which is an intermediate-mass protostar (M * ∼ 5.4 M ⊙) with M ̇ acc ∼ 1.1 × 10 − 5 M ⊙ yr − 1 in the 2005 epoch and M ̇ acc ∼ 1.7 × 10 − 3 M ⊙ yr − 1 in the 2017 epoch. The enhanced M ̇ acc during outburst induces the luminosity outburst ΔL ≈ 7600 L ⊙. In the accretion outburst, a larger stellar radius is required to produce M ̇ acc consistent with the value estimated from the kinematics of H2O masers. M17 MIR shows two accretion outbursts (Δt ∼ 9–20 yr) with outburst magnitudes of about 2 mag, separated by a 6 yr quiescent phase. The accretion outburst occupies 83% of the time over 26 yr. The accretion rate in outburst is variable with amplitude much lower than the contrast between quiescent and outburst phases. The extreme youth of M17 MIR suggests that minor accretion bursts are frequent in the earliest stages of massive star formation.


2021 ◽  
Vol 921 (2) ◽  
pp. 161
Author(s):  
Coleman Dean ◽  
Rodrigo Fernández ◽  
Brian D. Metzger

Abstract We examine the effect of spatial resolution on initial mass ejection in grid-based hydrodynamic simulations of binary neutron star mergers. The subset of the dynamical ejecta with velocities greater than ∼0.6c can generate an ultraviolet precursor to the kilonova on approximately hour timescales and contribute to a years long nonthermal afterglow. Previous work has found differing amounts of this fast ejecta, by one to two orders of magnitude, when using particle-based or grid-based hydrodynamic methods. Here, we carry out a numerical experiment that models the merger as an axisymmetric collision in a corotating frame, accounting for Newtonian self-gravity, inertial forces, and gravitational wave losses. The lower computational cost allows us to reach spatial resolutions as high as 4 m, or ∼3 × 10−4 of the stellar radius. We find that fast ejecta production converges to within 10% for a cell size of 20 m. This suggests that fast ejecta quantities found in existing grid-based merger simulations are unlikely to increase to the level needed to match particle-based results upon further resolution increases. The resulting neutron-powered precursors are in principle detectable out to distances ≲200 Mpc with upcoming facilities.We also find that head-on collisions at the freefall speed, relevant for eccentric mergers, yield fast and slow ejecta quantities of order 10−2 M ⊙, with a kilonova signature distinct from that of quasi-circular mergers.


2021 ◽  
Vol 503 (4) ◽  
pp. 5704-5714
Author(s):  
A V Dodin ◽  
E A Suslina

ABSTRACT We find that dust clouds that eclipse young stars obscure the stellar disc inhomogeneously. In the particular case of CQ Tau, we find isolated optically thick structures with sizes ≲0.6R* and derive the typical AV gradient in the plane of the sky, finding it to be as high as a few magnitudes per stellar radius. The large extinction gradients and complex structure of the obscuring clouds lead not only to a noticeable Rossiter–McLaughlin effect but also to complex and variable shaping of stellar absorption lines.


2021 ◽  
Vol 502 (1) ◽  
pp. L35-L39
Author(s):  
F Dell’Agli ◽  
E Marini ◽  
F D’Antona ◽  
P Ventura ◽  
M A T Groenewegen ◽  
...  

ABSTRACT Modelling dust formation in single stars evolving through the carbon-star stage of the asymptotic giant branch (AGB) reproduces well the mid-infrared colours and magnitudes of most of the C-rich sources in the Large Magellanic Cloud (LMC), apart from a small subset of extremely red objects (EROs). An analysis of the spectral energy distributions of EROs suggests the presence of large quantities of dust, which demand gas densities in the outflow significantly higher than expected from theoretical modelling. We propose that binary interaction mechanisms that involve common envelope (CE) evolution could be a possible explanation for these peculiar stars; the CE phase is favoured by the rapid growth of the stellar radius occurring after C/O overcomes unity. Our modelling of the dust provides results consistent with the observations for mass-loss rates $\dot{M} \sim 5\times 10^{-4}\,{\rm M}_{\odot }$ yr−1, a lower limit to the rapid loss of the envelope experienced in the CE phase. We propose that EROs could possibly hide binaries with orbital periods of about days and are likely to be responsible for a large fraction of the dust production rate in galaxies.


Author(s):  
Itai Linial ◽  
Jim Fuller ◽  
Re’em Sari

Abstract Many massive stars appear to undergo enhanced mass loss during late stages of their evolution. In some cases, the ejected mass likely originates from non-terminal explosive outbursts, rather than continuous winds. Here we study the dependence of the ejecta mass, mej, on the energy budget E of an explosion deep within the star, using both analytical arguments and numerical hydrodynamics simulations. Focusing on polytropic stellar models, we find that for explosion energies smaller than the stellar binding energy, the ejected mass scales as $m_{\rm ej} \propto E^{\varepsilon _{m}}$, where ϵm = 2.4 − 3.0 depending on the polytropic index. The loss of energy due to shock breakout emission near the stellar edge leads to the existence of a minimal mass-shedding explosion energy, corresponding to a minimal ejecta mass. For a wide range of progenitors, from Wolf-Rayet stars to red supergiants, we find a similar limiting energy of $E_{\rm min} \approx 10^{46}-10^{47} \rm \, erg$, almost independent of the stellar radius. The corresponding minimal ejecta mass varies considerably across different progenitors, ranging from $\sim \! 10^{-8} \, \rm M_\odot$ in compact stars, up to $\sim \! 10^{-2} \, \rm M_\odot$ in red supergiants. We discuss implications of our results for pre-supernova outbursts driven by wave heating, and complications caused by the non-constant opacity and adiabatic index of realistic stars.


Author(s):  
Roy Gomel ◽  
Simchon Faigler ◽  
Tsevi Mazeh

Abstract Ellipsoidal variables present light-curve modulations caused by stellar distortion, induced by tidal interaction with their companions. An analytical approximated model of the ellipsoidal modulation is given as a discrete Fourier series by Morris and Naftilan 1993 (MN93). Based on numerical simulations using the PHOEBE code we present here updated amplitudes of the first three harmonics of the model. The expected amplitudes are given as a function of the mass ratio and inclination of the binary system and the fillout factor of the primary—the ratio between the stellar radius and that of its Roche lobe. The corrections can get up to 30% relative to the MN93 model for fillout factors close to unity. The updated model can be instrumental in searching for short-period binaries with compact-object secondaries in large data sets of photometric light curves. As shown in one OGLE light-curve example, the minimum mass ratio can be obtained by using only the amplitudes of the three harmonics and an estimation of the stellar temperature. High enough amplitudes can help to identify binaries with mass ratios larger than unity, some of which might have compact companions.


2020 ◽  
Author(s):  
Ilaria Caiazzo ◽  
Kevin Burdge ◽  
James Fuller ◽  
Jeremy Heyl ◽  
Shri Kulkarni ◽  
...  

Abstract White dwarfs represent the last stage of evolution for low and intermediate-mass stars (below about 8 times the mass of our Sun), and like their stellar progenitors, they are often found in binaries. If the orbital period of the binary is short enough, energy losses from gravitational wave radiation can shrink the orbit until the two white dwarfs come into contact and merge. Depending on the masses of the coalescing white dwarfs, the merger can lead to a supernova of type Ia, or it can give birth to a massive white dwarf. In the latter case, the white dwarf remnant is expected to be highly magnetised due to the strong dynamo that may arise during the merger, and rapidly rotating due to conservation of the orbital angular momentum of the binary. Here we report the discovery of a white dwarf, ZTF J190132.9+145808.7, which presents all these properties, but to an extreme: a rotation period of 6.94 minutes, one of the shortest measured for an isolated white dwarf, a magnetic field ranging between 600 MG and 900 MG over its surface, one of the highest fields ever detected on a white dwarf, and a stellar radius of 1810 km, slightly larger than the radius of the Moon. Such a small radius implies the star's mass is the closest ever detected to the white dwarf maximum mass, or Chandrasekhar mass. In fact, as the white dwarf cools and its composition stratifies, it may become unstable and collapse due to electron capture, exploding into a thermonuclear supernova or collapsing into a neutron star. Neutron stars born in this fashion could account for 10% of their total population.


Sign in / Sign up

Export Citation Format

Share Document