peculiar stars
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 22)

H-INDEX

25
(FIVE YEARS 3)

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 465
Author(s):  
Iosif Romanyuk

We present a survey of the most important results obtained in observations with the 6-m telescope in the studies of magnetic fields of chemically peculiar stars. It is shown that we have found more than 200 new magnetic chemically peculiar stars, which is more than 30% of their total known number. Observations of ultra-slow rotators (stars with rotation periods of years and decades) have shown that there are objects with strong fields among them, several kG in magnitude. In the association of young stars in Orion, it has been found that the occurrence and strength of magnetic fields of chemically peculiar stars decrease sharply with age in the interval from 2 to 10 Myr. These data indicate the fossil nature of magnetic fields of chemically peculiar stars. About 10 magnetic stars were found based on ultra-accurate photometry data obtained from the Kepler and TESS satellites. A new effective method of searching for magnetic stars was developed. In addition, the exact rotation periods make it possible to build reliable curves of the longitudinal field component variability with the phase of the star’s rotation period, and hence to create its magnetic model. The survey is dedicated to the memory of Prof. Yuri Nikolaevich Gnedin.


2021 ◽  
Vol 162 (1) ◽  
pp. 32
Author(s):  
Li Qin ◽  
A-Li Luo ◽  
Wen Hou ◽  
Yin-Bi Li ◽  
Kai-Ming Cui ◽  
...  
Keyword(s):  

Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 214
Author(s):  
Josep Martí ◽  
Pedro L. Luque-Escamilla

The number of gamma-ray binaries currently known is still so small that even a new finding represents a significant expansion of its population. We present a possible hunting strategy based on screening different catalogs to filter potential peculiar stars consistent with gamma-ray sources whose association at lower energies is not yet certain. So far, two candidate systems have emerged from this process; we report about them here.


2020 ◽  
Vol 500 (2) ◽  
pp. 2577-2589
Author(s):  
O Kochukhov ◽  
C Johnston ◽  
J Labadie-Bartz ◽  
S Shetye ◽  
T A Ryabchikova ◽  
...  

ABSTRACT The late B-type star V772 Cas (HD 10260) was previously suspected to be a rare example of a magnetic chemically peculiar star in an eclipsing binary system. Photometric observations of this star obtained by the TESS satellite show clear eclipses with a period of 5.0137 d accompanied by a significant out-of-eclipse variation with the same period. High-resolution spectroscopy reveals V772 Cas to be an SB1 system, with the primary component rotating about a factor two slower than the orbital period and showing chemical peculiarities typical of non-magnetic HgMn chemically peculiar stars. This is only the third eclipsing HgMn star known and, owing to its brightness, is one of the very few eclipsing binaries with chemically peculiar components accessible to detailed follow-up studies. Taking advantage of the photometric and spectroscopic observations available for V772 Cas, we performed modelling of this system with the phoebe code. This analysis provided fundamental parameters of the components and demonstrated that the out-of-eclipse brightness variation is explained by the ellipsoidal shape of the evolved, asynchronously rotating primary. This is the first HgMn star for which such variability has been definitively identified.


2020 ◽  
Vol 642 ◽  
pp. A101
Author(s):  
K. Perraut ◽  
M. Cunha ◽  
A. Romanovskaya ◽  
D. Shulyak ◽  
T. Ryabchikova ◽  
...  

Context. The variety of physical processes at play in chemically peculiar stars makes it difficult to determine their fundamental parameters. In particular, for the magnetic ones, called Ap stars, the strong magnetic fields and the induced spotted stellar surfaces may lead to biased effective temperatures when these values are derived through spectro-photometry. Aims. We propose to benefit from the exquisite angular resolution provided by long-baseline interferometry in the visible to determine the accurate angular diameters of a number of Ap stars, and thus estimate their radii by a method that is as independent as possible of atmospheric models. Methods. We used the visible spectrograph VEGA at the CHARA interferometric array to complete the sample of Ap stars currently observable with this technique. We estimated the angular diameter and radius of six new targets. We estimated their bolometric flux based solely on observational spectroscopic and photometric data to derive nearly model-independent luminosities and effective temperatures. Results. We extend to 14 the number of Ap stars for which interferometric angular diameters have been measured. The fundamental parameters we derived for the complete Ap sample are compared with those obtained through a self-consistent spectroscopic analysis. Based on a model fitting approach of high-resolution spectra and spectro-photometric observations over a wide wavelength range, this method takes into account the anomalous chemical composition of the atmospheres and the inhomogeneous vertical distribution for different chemical elements. Regarding both the radii and the effective temperatures, the derived values from our interferometric observations and from self-consistent modelling are consistent within better than 2σ for nine targets out of ten. We thus benchmark nine Ap stars for effective temperatures ranging from 7200 and 9100 K, and luminosities ranging between 7 L⊙ and 86 L⊙. Conclusions. These results will be key for the future derivation of accurate radii and other fundamental parameters of fainter peculiar stars for which both the sensitivity and the angular resolution of the current interferometers are not sufficient. Within the context of the observations of Ap stars with the Transiting Exoplanet Survey Satellite (TESS), these interferometric measurements are crucial for testing the mechanism of pulsation excitation at work in these peculiar stars. In particular, our interferometric measurements provide accurate locations in the Hertzsprung-Russell diagram for hot Ap stars among which pulsations may be searched for with TESS, putting to test the blue edge of the theoretical instability strip. These accurate locations could be used to derive masses and ages of these stars through a specific grid of models, and to test correlations between the properties of these peculiar stars and their evolutionary state.


2020 ◽  
Vol 641 ◽  
pp. A145
Author(s):  
C. Saffe ◽  
P. Miquelarena ◽  
J. Alacoria ◽  
J. F. González ◽  
M. Flores ◽  
...  

Context. There is very little information to be found in the literature regarding the detection of planets orbiting chemically peculiar stars. Aims. Our aim is to determine the detailed chemical composition of the remarkable planet host star KELT-17. This object hosts a hot-Jupiter planet with 1.31 MJup detected by transits, and it is one of the more massive and rapidly rotating planet hosts seen to date. We set out to derive a complete chemical pattern for this star, in order to compare it with those of chemically peculiar stars. Methods. We carried out a detailed abundance determination in the planet host star KELT-17 via spectral synthesis. Stellar parameters were estimated iteratively by fitting Balmer line profiles and imposing the Fe ionization balance using the SYNTHE program together with plane-parallel ATLAS12 model atmospheres. Specific opacities for an arbitrary composition and microturbulence velocity vmicro were calculated through the opacity sampling (OS) method. The abundances were determined iteratively by fitting synthetic spectra to metallic lines of 16 different chemical species using SYNTHE. The complete chemical pattern of KELT-17 was compared to the recently published average pattern of Am stars. We estimated the stellar radius using two methods: a) comparing the synthetic spectral energy distribution with the available photometric data and the Gaia parallax, and b) using a Bayesian estimation of stellar parameters using stellar isochrones. Results. We found over-abundances of Ti, Cr, Mn, Fe, Ni, Zn, Sr, Y, Zr, and Ba, together with subsolar values of Ca and Sc. Notably, the chemical pattern agrees with those recently published for Am stars, making KELT-17 the first exoplanet host whose complete chemical pattern is unambiguously identified with this class. The stellar radius derived by two different methods agrees to each other and with those previously obtained in the literature.


2020 ◽  
Vol 496 (1) ◽  
pp. 832-850 ◽  
Author(s):  
S Drew Chojnowski ◽  
Swetlana Hubrig ◽  
Sten Hasselquist ◽  
Rachael L Beaton ◽  
Steven R Majewski ◽  
...  

ABSTRACT We report on H-band spectra of chemically peculiar Mercury–Manganese (HgMn) stars obtained via the SDSS/APOGEE survey. As opposed to other varieties of chemically peculiar stars such as classical Ap/Bp stars, HgMn stars lack strong magnetic fields and are defined by extreme overabundances of Mn, Hg, and other heavy elements. A satisfactory explanation for the abundance patterns remains to be determined, but low rotational velocity is a requirement and involvement in binary/multiple systems may be as well. The APOGEE HgMn sample currently consists of 269 stars that were identified among the telluric standard stars as those whose metallic absorption content is limited to or dominated by the H-band Mn ii lines. Due to the fainter magnitudes probed by the APOGEE survey as compared to past studies, only 9/269 stars in the sample were previously known as HgMn types. The 260 newly identified HgMn stars represents a more than doubling of the known sample. At least 32 per cent of the APOGEE sample are found to be binary or multiple systems, and from multi-epoch spectroscopy, we were able to determine orbital solutions for at least one component in 32 binaries. Many of the multilined systems include chemically peculiar companions, with noteworthy examples being the HgMn+Ap/Bp binary HD 5429, the HgMn+HgMn binary HD 298641, and the HgMn+Bp Mn + Am triple system HD 231263. As a further peculiarity, roughly half of the sample produces narrow emission in the C i 16895 Å line, with widths and radial velocities that match those of the Mn ii lines.


Author(s):  
J M Seach ◽  
S C Marsden ◽  
B D Carter ◽  
C Neiner ◽  
C P Folsom ◽  
...  

Abstract We present a spectropolarimetric magnetic snapshot survey of 55 stars which includes 53 F-type stars ranging from spectral types F0 to F9 plus 2 chemically peculiar stars β CrB, and δ Cap. We look for magnetic fields in stars spanning a range of effective temperatures where the transition from fossil to dynamo magnetic fields is believed to occur. High-resolution spectropolarimetry using circularly polarized spectra is used to look for a magnetic detection in the Stokes V profile, determine the mean longitudinal magnetic field (Bl), and to look for correlations with stellar parameters. Surface magnetic fields are detected on 14 F-stars, and present in every spectral class from F3V-F9V ranging in strength from 0.3 ± 0.1 G (36 UMa, F8V) to 8.3 ± 0.9 G (h Dra, F8V). Thus we find photospheric magnetic fields are present in stars as early as spectral type F3V with an outer convection zone thickness less than a few per cent of the stellar radius.


Sign in / Sign up

Export Citation Format

Share Document