scholarly journals Bi-objective optimal control of some PDEs: Nash equilibria and quasi-equilibria

Author(s):  
Enrique Enrique Fernandez Cara <cara@us. es> ◽  
Irene Marín-Gayte

This paper deals with the solution of some multi-objective optimal control problems for several PDEs: linear and semilinear elliptic equations and stationary Navier-Stokes systems.  Specifically, we look for Nash equilibria associated with standard cost functionals. For linear and semilinear elliptic equations, we prove the existence of equilibria and we deduce related optimality systems. For stationary Navier-Stokes equations, we prove the existence of Nash quasi-equilibria, i.e. solutions to the optimality system. In all cases, we present some iterative algorithms and, in some of them, we establish convergence results. For the existence and characterization of Nash quasi-equilibria in the Navier-Stokes case, we use the formalism of Dubovitskii and Milyutin. In this context, we also present a finite element approximation and we illustrate the techniques with numerical experiments.

Author(s):  
Mohamed Iguernane ◽  
Serguei Nazarov ◽  
Jean-Rodolphe Roche ◽  
Jan Sokolowski ◽  
Katarzyna Szulc

Topological Derivatives for Semilinear Elliptic EquationsThe form of topological derivatives for an integral shape functional is derived for a class of semilinear elliptic equations. The convergence of finite element approximation for the topological derivatives is shown and the error estimates in theL∞norm are obtained. The results of numerical experiments which confirm the theoretical convergence rate are presented.


2004 ◽  
Vol 14 (04) ◽  
pp. 603-618 ◽  
Author(s):  
ADRIAN DUNCA ◽  
VOLKER JOHN

This paper analyzes finite element approximations of space averaged flow fields which are given by filtering, i.e. averaging in space, the solution of the steady state Stokes and Navier–Stokes equations with a differential filter. It is shown that [Formula: see text], the error of the filtered velocity [Formula: see text] and the filtered finite element approximation of the velocity [Formula: see text], converges under certain conditions of higher order than [Formula: see text], the error of the velocity and its finite element approximation. It is also proved that this statement stays true if the L2-error of finite element approximations of [Formula: see text] and [Formula: see text] is considered. Numerical tests in two and three space dimensions support the analytical results.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 1240-1271 ◽  
Author(s):  
Camilo Andrés Bayona Roa ◽  
Joan Baiges ◽  
R Codina

Purpose – The purpose of this paper is to apply the variational multi-scale framework to the finite element approximation of the compressible Navier-Stokes equations written in conservation form. Even though this formulation is relatively well known, some particular features that have been applied with great success in other flow problems are incorporated. Design/methodology/approach – The orthogonal subgrid scales, the non-linear tracking of these subscales, and their time evolution are applied. Moreover, a systematic way to design the matrix of algorithmic parameters from the perspective of a Fourier analysis is given, and the adjoint of the non-linear operator including the volumetric part of the convective term is defined. Because the subgrid stabilization method works in the streamline direction, an anisotropic shock capturing method that keeps the diffusion unaltered in the direction of the streamlines, but modifies the crosswind diffusion is implemented. The artificial shock capturing diffusivity is calculated by using the orthogonal projection onto the finite element space of the gradient of the solution, instead of the common residual definition. Temporal derivatives are integrated in an explicit fashion. Findings – Subsonic and supersonic numerical experiments show that including the orthogonal, dynamic, and the non-linear subscales improve the accuracy of the compressible formulation. The non-linearity introduced by the anisotropic shock capturing method has less effect in the convergence behavior to the steady state. Originality/value – A complete investigation of the stabilized formulation of the compressible problem is addressed.


Sign in / Sign up

Export Citation Format

Share Document