scholarly journals Techno-Economic Evaluation of Energy Storage Systems Built from EV Batteries – Prospective Revenues in Different Stationary Applications

2018 ◽  
Vol 64 ◽  
pp. 03003 ◽  
Author(s):  
Nguyen Tam Thanh ◽  
Naumann Maik ◽  
Truong Cong Nam ◽  
Jossen Andreas

Battery energy storage systems (BESSs) are already being deployed for several stationary applications in a technically and economically feasible way. This paper focuses on the revenues of industrial BESSs built from electric vehicle lithiumion batteries with varying states of health. For this analysis, a stationary BESS simulation model is used, that is parameterised with parameters of a 22-kWh automotive battery. The comprehensive model consists of several detailed sub-models, considering battery characteristics, ageing and operating strategies, which allow technical assessment through time series simulation. Therefore, capacity fade and energy losses are considered in this techno-economic evaluation. Potential economically feasible applications of new and second-life batteries, such as photovoltaic home storage, intraday trading and frequency regulation as well as their combined operation are compared. The investigation includes different electricity price scenarios. The combined operation, followed by frequency regulation, is found to have the highest economic viability for the specified electric vehicle battery.

2021 ◽  
Author(s):  
Hassan Hayajneh ◽  
Xuewei Zhang

To minimize the curtailment of renewable generation and incentivize grid-scale energy storage deployment, a concept of combining stationary and mobile applications of battery energy storage systems built within renewable energy farms is proposed. A simulation-based optimization model is developed to obtain the optimal design parameters such as battery capacity and power ratings by solving a multi-objective optimization problem that aims to maximize the economic profitability, the energy provided for transportation electrification, the demand peak shaving, and the renewable energy utilized. Two applications considered for the stationary energy storage systems are the end-consumer arbitrage and frequency regulation, while the mobile application envisions a scenario of a grid-independent battery-powered electric vehicle charging station network. The charging stations receive supplies from the energy storage system that absorbs renewable energy, contributing to a sustained DC demand that helps with revenues. Representative results are presented for two operation modes and different sets of weights assigned to the objectives. Substantial improvement in the profitability of combined applications over single stationary applications is shown. Pareto frontier of a reduced dimensional problem is obtained to show the trade-off between design objectives. This work could pave the road for future implementations of the new form of energy storage systems.<br>


Sign in / Sign up

Export Citation Format

Share Document