scholarly journals The Influence of Ice-Resistant Coatings Characteristics to the Energy Efficiency of Ice-Going Ships

2021 ◽  
Vol 320 ◽  
pp. 01007
Author(s):  
V.A. Veselov ◽  
M.V. Kitaev ◽  
P.O. Pastukhov ◽  
O.E. Surov

The main purpose of ice-resistant coatings designed for icebreakers and ice navigation ships is the ability to protect of the ship’s hull in the most severe operating conditions. The special coatings certified by the Classification Societies for ice abrasion can provide this protection. These coatings allow to reduce the required thickness of the ship’s hull and reduce the construction weight of the ships. On the other hand, these coatings must have a low friction coefficient, which reduce the frictional resistance of the hull on ice and fuel consumption, increase the service life of the ship and power plant, reduce CO2 emissions into the atmosphere and affect to the operational and economic efficiency of the ship. In this paper, we present the results of experimental tests of friction coefficient on ice for various types of ice-resistant coatings and analysis the influence of ice-resistant coatings characteristics to the energy efficiency of ice-going ships.


Author(s):  
Liviu Crudu ◽  
Radu Bosoancă ◽  
Dan Obreja

The evaluation of ship resistance is of paramount importance having a decisive impact on the economic performances and efficiency depending on mission. If new IMO requirements through the Energy Efficiency Design Index (EEDI) are taken into account the necessity to have more and more accurate tools capable to consider the influences of different parameters became mandatory. The availability of towing tank facilities and the full scale trials are the practical means in order to be able to confirm the accuracy of theoretical formulations and to define the limits of CFD applications. Based on the results of the towing tank tests, a direct comparison with the results provided by classical methods and CFD computations can be systematically can be performed. On the other hand, the influences of the modifications operated on the fore part of the ship aretheoretically evaluated and compared with the towing tank results. Consequently, the paper is focused on the comparison of the results evaluated using different tools which have been carried out for a Chemical Tanker built by Constanta Shipyard Romania.



Author(s):  
Ralph L. Barnett ◽  
Susanne A. Glowiak ◽  
Peter J. Poczynok

The conventional approach to human slipping is essentially deterministic; it states that no slipping will occur when the average friction coefficient is greater than some critical friction criterion. Under this condition, pedestrians will not slip when they encounter the average friction coefficient. On the other hand, to successfully negotiate a walk of n-steps they must not slip when they encounter the smallest of the n friction coefficients. Consequently, a new slip theory has been formulated as a problem in extreme value statistics. An elegant relationship is obtained among the probability of slipping, the critical friction criterion, the number of steps taken by the walker, and the central measure, scatter, and asymmetry of the distribution of friction coefficients. The new theory reveals the structure of human slipping in a startling way that introduces completely new concepts: the go/no go nature of classical slip predictions is replaced by a probability of slipping; low friction floor/footwear couples may lead to fewer slips than high friction ones; slipping can occur in any case where conventional theory predicts “no slip”; and the number of slips depends on the distance traveled by a pedestrian. Finally, this paper develops the idea that the slipperiness of a real floor must be evaluated for a duty-cycle. Duty-cycles can be represented as frequency histograms when a floor is homogeneous and isotropic.



2018 ◽  
Vol 29 (2) ◽  
pp. 245-259 ◽  
Author(s):  
Milica Jović ◽  
Mirjana Laković ◽  
Miloš Banjac

The electric power system of the Republic of Serbia relies mostly on lignite-fired thermal power plants, with 70% of the total electricity generation. Most of these plants are over 30 years old, and investment in their modernization is necessary. The energy efficiency of the 110 MW coal-fired power plant in which the condenser is cooled by the mechanical draught wet cooling towers system is analyzed in this paper. Attention is primarily devoted to operating conditions of the cold end of the plant, i.e. to the interrelationship of the condenser and cooling towers. Most important parameters that affect the operation of the cooling towers system are ambient air temperature and relative humidity, specific mass flow rate, and temperature of cooled water. With the existing cooling system, the overall energy efficiency of the plant is low, especially in the summer months, even less than 30%, due to adverse weather conditions. By upgrading existing cooling tower system by adaptation of two additional cooling tower cells, overall energy efficiency can be increased by 1.5%. The cooling tower system rehabilitation investments payback period is estimated to be less than one year. Static method for economic and financial assessment is used.



Sign in / Sign up

Export Citation Format

Share Document