frictional resistance
Recently Published Documents


TOTAL DOCUMENTS

746
(FIVE YEARS 151)

H-INDEX

39
(FIVE YEARS 3)

2022 ◽  
pp. 136943322110700
Author(s):  
Wenxue Zhang ◽  
Lijun Su ◽  
Cheng Zhang ◽  
Yongrui Zheng ◽  
Weifeng Yang

The seismic requirements of piers with fixed bearings (the fixed pier) for continuous girder bridges are relatively high, while the potential seismic capabilities of piers with sliding bearings (the sliding piers) are not fully utilized. To solve this contradiction, a new type of winding rope shock absorption device activated by a fluid viscous damper (WRD-D) was proposed. The WRD-D was installed on the top of the sliding piers, and the both ends of a fluid viscous damper were connected to the superstructure by winding ropes. During an earthquake, the damping force rises with the increase of relative speed between the sliding piers and the superstructure, activating the WRD-D and producing large frictional resistance, subsequently causing the sliding piers and the fixed pier to bear the seismic load cooperatively. In this study, the working mechanism of the WRD-D was researched. The shaking table test of a scaled continuous girder bridge model employing the WRD-D was conducted. The test results reveal that the WRD-D can effectively reduce the seismic requirements of the fixed pier and the superstructure displacements.


2022 ◽  
Author(s):  
Tiantian Zhang ◽  
Yueping Yin ◽  
Bin Li ◽  
Yang Gao ◽  
Meng Wang

Abstract On October 17 and 29, 2018, two rock and glacier avalanches occurred on the western slope of the Sedongpu Basin upstream of the Yarlung Zangbo River in the Tibetan Plateau, forming the disaster chains and causing damage to many bridges and roads. Based on the comparative analysis of multiple pre-and post-remote sensing images, the initial sliding body, which was composed of rock and glacial material, was located on a steep slope above an elevation of 6000 m. Under the coupling effect of multiple factors such as gravity, rainfall, and weather changes, the initial sliding body detached from the source zone and then transformed into a debris flow after impact and fragmentation. The debris flow traveled downstream and scraped loose glacial till in its path, causing the volume of the sliding body to increase. In addition, the debris flow traveled 10 km under low frictional resistance, as a result of the lubrication via early rainfall and glacial meltwater. Eventually, the debris flow rushed out onto the valley floor, forming a landslide dam and blocking the Yarlung Zangbo River. The deposit volumes on October 17 and 29 were 20.4 million m3 and 10.1 million m3, respectively, with a total mean thickness of ~22m. This study provides an insight into the dynamic process as they unfolded, through multitemporal satellite imagery and numerical simulation. Furthermore, we also discuss the potential cause of rock/ice avalanche and disaster scenarios, as well as the tendency of the rock and glacier avalanches are discussed.


2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110704
Author(s):  
Jian Yin ◽  
Qiang Hao ◽  
Yu Liu ◽  
Shengfang Zhang ◽  
Zhihua Sha

The brake disc plays a crucial role to keep the stable braking of a high-speed and heavy-duty disc brake. There is always high temperature, brake vibration, and even serious deformation under braking pressure and frictional resistance. To improve brake performance, this paper aims to find new internal and surface structures of the brake disc. An equivalent moving load (EML) topology optimization method for internal structure is proposed. Topography optimization method oriented to displacement and stress control for surface structure is carried out. Multiobjective functions containing thermal-structural coupled rigidity and natural frequency of the brake disc are established in the internal and surface structure optimizations. Internal and surface structures of the brake disc are optimized, and the mechanic properties of the brake disc are improved. Thermal-structural coupling and modal analyses are verified with high-speed and heavy-duty brake working conditions. The results show that new brake disc structures meet the requirements, and the effectiveness of the proposed EML topology optimization and topography optimization methods has been proved.


2021 ◽  
Author(s):  
Duaa Al-Jeznawi ◽  
ISMACAHYADI Mohamed Jais ◽  
Bushra S. Albusoda

Abstract Liquefaction of saturated soil layers is one of the most common causes of structural failure during earthquakes. Liquefaction occurs as a result of increasing pore water pressure, whereby the rise in water pressure occurs due to unexpected change in stress state under short-term loading, i.e., shaking during an earthquake. Thus, general failure occurs when the soil softens and eliminates its stiffness against the uplift pressure from the stability of the subsurface structure. In this case, the condition of soil strata is considered undrained because there is not enough time for the excess pore water pressure to dissipate when a sudden load is applied. To represent the non-linear characteristics of saturated sand under seismic motions in Kobe and Ali Algharbi earthquakes, the computational model was simulated using the UBCSAND model. The current study was carried out by adopting three-dimensional-based finite element models that were evaluated by shaking table tests of a single pile model erected in the saturated soil layers. The experimental data were utilized to estimate the liquefaction and seismicity of soil deposits. According to the results obtained from the physical models and simulations, this proposed model accurately simulates the liquefaction phenomenon and soil-pile response. However, there are some differences between the experiment and the computational analyses. Nonetheless, the results showed good agreement with the general trend in terms of deformation, acceleration, and liquefaction ratio. Moreover, the displacement of liquefied soil around the pile was captured by the directions of vectors generated by numerical analysis, which resembled a worldwide circular flow pattern. The results revealed that during the dynamic excitation, increased pore water pressure and subsequent liquefaction caused a significant reduction in pile frictional resistance. Despite this, positive frictional resistance was noticed through the loose sand layer (near the ground surface) until the soil softened completely. It is worth mentioning that the pile exhibited excessive settlement which may attribute to the considerable reduction, in the end, bearing forces which in turn mobilizing extra end resistance.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1580
Author(s):  
Takashi Fukuda ◽  
Makoto Ryo Harada

We conducted a theoretical investigation of the cross-sectional aspect ratio of a rectangular channel to have sufficiently low frictional resistance under less than 150 of the Reynolds number. From the theoretical consideration, it was clarified that 3.40 or more is recommended as a criterion for determining the aspect ratio. This addresses the problem of determining the interval of rectangle channels, installed in a plate reactor. There is a concern that the real system does not follow the analytical solution, assuming laminar flow, since the higher aspect ratio leads to disturbances of the flow such as the emergence of vortices. However, in the channel’s volume range of (W × H × L) = (7.0 mm × 0.38 mm × 0.26 m), such a turbulence was not observed in the detailed numerical calculation by CFD, where both calculation results were in agreement to within 3% accuracy. Moreover, even in an experimental system with a surface roughness of ca. 7%, friction resistance took agreement within an accuracy of ±30%.


Author(s):  
H Hakimzadeh ◽  
M Torabi Azad ◽  
M A Badri ◽  
F Azarsina ◽  
M Ezam

Specification of the frictional resistance values of tankers is the first step in managing their fuel consumption. Drag force of a very large crude oil carrier has been calculated using the numerical simulation method. With application of the ANSYS CFX software, the scaled model of the mentioned tanker with the length of 2.74 meters, width of 0.5 meters, draft of 0.17 meters was used for numerical simulation of the drag force in the tanker. Furthermore, the numerical solution of the drag force of the model was performed for 5 different speeds ranging from 0.65 to 0.85m/s. Based on the validations carried out, with mean drafts of 8 and 16.5cm, the difference between the results of the experimental and numerical models at low speeds was about 7%. However, the difference was observed to be up to 15% at higher Froude numbers. The results of the present study with respect to the SALINA are based on the method presented in ISO 19030 standard addressing the performance monitoring during vessel servicing.


Landslides ◽  
2021 ◽  
Author(s):  
Georg Nagl ◽  
Johannes Hübl ◽  
Roland Kaitna

AbstractThe frictional resistance of rock and debris is supposed to induce stress anisotropy in the unsteady, non-uniform flow of gravitational mass flows, including debris flows. Though widely used in analytical models and numerical simulation tools, concurrent measurements of stresses in different directions are not yet available for natural flow events. The present study aims to investigate the relation of longitudinal and bed-normal stress exerted by two natural debris flows impacting a monitoring barrier in the Gadria creek, Italy. For that, a force plate in front of a barrier was used to continuously record forces normal to the channel bed, whereas load cells mounted on the vertical wall of the barrier recorded forces in flow direction. We observed an anisotropic stress state during most of the flow events, with stress ratios ranging between 0.1 and 3.5. Video recordings reveal complex deposition and re-mobilization patterns in front of the barrier during surges and highlight the unsteady nature of debris flows. These first-time in-situ measurements confirm the assumption of stress anisotropy in natural debris flows for gravitational mass flows, and provide data for model testing.


Tribologia ◽  
2021 ◽  
Vol 295 (1) ◽  
pp. 15-19
Author(s):  
Mariusz Opałka

This paper presents a methodology for conducting tribological sliding tests based on decaying vibrations in pendular motion. The proposed method of determining the (averaged) coefficient of friction in pendular motion is based on measuring the potential kinetic energy. The method is characterized by a short measuring time and enables a quick comparison of the friction coefficients of different materials.


Sign in / Sign up

Export Citation Format

Share Document