scholarly journals Metasurface virtual absorbers: unveiling operative conditions through equivalent lumped circuit model

2021 ◽  
Vol 8 ◽  
pp. 3
Author(s):  
Angelica Viola Marini ◽  
Davide Ramaccia ◽  
Alessandro Toscano ◽  
Filiberto Bilotti

Virtual absorption concept has been recently introduced as a new phenomenon observed in electromagnetics and optics consisting of theoretically unlimited accumulation of energy within a finite volume of material without dissipation. The anomalous behaviour is achieved by engaging the complex zero scattering eigenmodes of the virtual absorbing system by illuminating it with a proper complex frequency ω = ω r  + jω i , whose value is strictly determined by the system characteristics. In this paper, we investigate on the position of the zero-pole scattering pairs in the complex frequency plane as a function of the input impedance of the metasurface-based lossless virtual absorber. We analytically derive the conditions under which a properly modulated monochromatic plane wave can be virtually absorbed by the system and stored within its volume. The analysis is developed by modelling the propagation of a normally impinging plane wave through its equivalent transmission line model terminated in an arbitrary reactive load, which in turn models the input impedance of the metasurface-based system under consideration. The study allows to determine a priori whether the metasurface-based system can support the virtual absorption or not by evaluating the time-constant from its equivalent circuit.

2020 ◽  
Author(s):  
Angelica Viola Marini ◽  
Davide Ramaccia ◽  
Alessandro Toscano ◽  
Filiberto Bilotti

Virtual absorption concept has been recently introduced as a new phenomenon observed in electromagnetics and optics consisting of an undefined energy accumulation within a finite volume of material without dissipation. The anomalous behaviour is achieved by engaging the complex zero scattering eigenmodes of the virtual absorbing system by illuminating it with a proper complex frequency, whose value is strictly determined by the system characteristics. In this paper, we investigate on the position of the zero-pole scattering pairs in the complex frequency plane as a function of the input impedance of the metasurface-based lossless virtual absorber. We analytically derive the conditions under which a properly modulated monochromatic plane wave can be virtually absorbed by the system and stored within its volume. The analysis is developed by modelling the propagation of a normally impinging plane wave though its equivalent transmission line model terminated on an arbitrary reactive load, which in turn models the input impedance of the metasurface-based system under consideration. The study allows to determine a priori whether the metasurface-based system can support the virtual absorption or not by evaluating the time-constant from its equivalent circuit.


2020 ◽  
Author(s):  
Angelica Viola Marini ◽  
Davide Ramaccia ◽  
Alessandro Toscano ◽  
Filiberto Bilotti

Virtual absorption concept has been recently introduced as a new phenomenon observed in electromagnetics and optics consisting of an undefined energy accumulation within a finite volume of material without dissipation. The anomalous behaviour is achieved by engaging the complex zero scattering eigenmodes of the virtual absorbing system by illuminating it with a proper complex frequency, whose value is strictly determined by the system characteristics. In this paper, we investigate on the position of the zero-pole scattering pairs in the complex frequency plane as a function of the input impedance of the metasurface-based lossless virtual absorber. We analytically derive the conditions under which a properly modulated monochromatic plane wave can be virtually absorbed by the system and stored within its volume. The analysis is developed by modelling the propagation of a normally impinging plane wave though its equivalent transmission line model terminated on an arbitrary reactive load, which in turn models the input impedance of the metasurface-based system under consideration. The study allows to determine a priori whether the metasurface-based system can support the virtual absorption or not by evaluating the time-constant from its equivalent circuit.


2019 ◽  
Vol 8 (1) ◽  
pp. 82-90
Author(s):  
L. K. Warne ◽  
S. Campione ◽  
R. S. Coats

This paper considers plane wave coupling to a transmission line consisting of an aerial wire above a conducting ground. Simple circuit models are constructed for the terminating impedances at the ends of the line including radiation effects. We consider the following load topologies: open circuit, short circuit, and grounded rods. Results from the transmission line model with these loads show good agreement with full-wave simulations.  


2020 ◽  
Vol 68 (10) ◽  
pp. 4161-4168
Author(s):  
Jia-Chen Zhang ◽  
Xingchang Wei ◽  
Li Ding ◽  
Xian-Ke Gao ◽  
Zi-Xiang Xu

2012 ◽  
Vol 12 (01) ◽  
pp. 1250020 ◽  
Author(s):  
WEI HE ◽  
HANGUANG XIAO ◽  
XINGHUA LIU

A novel recursive algorithm was proposed to calculate the input impedance of human systemic arterial tree, and to simulate the human systemic arterial hemodynamics with an 55 segment transmission line model. In calculation of input impedance, the structure of the arterial tree was expressed as a single linked list. An infinitesimal constant was used to replace 0 Hz frequency to calculate the DC and AC part of input impedance simultaneously. The input impedance at any point of the arterial tree can obtain easily by the proposed recursive algorithm. The results of input impedance are in accord with experimental data and other models' results. In addition, some comparisons were conducted about the effects of arterial compliance, length, internal radius and wall thickness on the input impedance of ascending aorta. The results showed input impedances of ascending aorta displayed significantly different characteristics for different kinds of parameters. Finally, the blood pressure and flow waveforms of all arterial segments were calculated and displayed in 3D. The arterial elasticity and viscosity were discussed by changing the Young's modulus and the phase difference, respectively. The simulation results showed that the blood pressure and flow waveforms of the arterial tree reflected accurately the main characteristic features of physiopathological changes, which demonstrated the effectiveness of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document