lumped circuit model
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Moustafa Raya ◽  
Mathias Magdowski ◽  
Ralf Vick

2021 ◽  
Vol 143 (7) ◽  
Author(s):  
R. Caponetto ◽  
S. Graziani ◽  
E. Murgano ◽  
C. Trigona ◽  
A. Pollicino ◽  
...  

Abstract In this paper, a novel fractional-order element (FOE) is modeled in a wide frequency range. The FOE is based on a green biopolymer, i.e., bacterial cellulose (BC), infused with ionic liquids (ILs). The modeling is performed in the frequency domain and a lumped-circuit model is proposed. The model is an evolution with respect to a simpler one already introduced by the authors, for a narrower frequency range. Results show that ILs generate a quite complex frequency domain behavior, which can be described in the framework of FOEs. Furthermore, results on the time stability of the device under investigation are given.


2021 ◽  
Vol 8 ◽  
pp. 3
Author(s):  
Angelica Viola Marini ◽  
Davide Ramaccia ◽  
Alessandro Toscano ◽  
Filiberto Bilotti

Virtual absorption concept has been recently introduced as a new phenomenon observed in electromagnetics and optics consisting of theoretically unlimited accumulation of energy within a finite volume of material without dissipation. The anomalous behaviour is achieved by engaging the complex zero scattering eigenmodes of the virtual absorbing system by illuminating it with a proper complex frequency ω = ω r  + jω i , whose value is strictly determined by the system characteristics. In this paper, we investigate on the position of the zero-pole scattering pairs in the complex frequency plane as a function of the input impedance of the metasurface-based lossless virtual absorber. We analytically derive the conditions under which a properly modulated monochromatic plane wave can be virtually absorbed by the system and stored within its volume. The analysis is developed by modelling the propagation of a normally impinging plane wave through its equivalent transmission line model terminated in an arbitrary reactive load, which in turn models the input impedance of the metasurface-based system under consideration. The study allows to determine a priori whether the metasurface-based system can support the virtual absorption or not by evaluating the time-constant from its equivalent circuit.


2020 ◽  
Author(s):  
Angelica Viola Marini ◽  
Davide Ramaccia ◽  
Alessandro Toscano ◽  
Filiberto Bilotti

Virtual absorption concept has been recently introduced as a new phenomenon observed in electromagnetics and optics consisting of an undefined energy accumulation within a finite volume of material without dissipation. The anomalous behaviour is achieved by engaging the complex zero scattering eigenmodes of the virtual absorbing system by illuminating it with a proper complex frequency, whose value is strictly determined by the system characteristics. In this paper, we investigate on the position of the zero-pole scattering pairs in the complex frequency plane as a function of the input impedance of the metasurface-based lossless virtual absorber. We analytically derive the conditions under which a properly modulated monochromatic plane wave can be virtually absorbed by the system and stored within its volume. The analysis is developed by modelling the propagation of a normally impinging plane wave though its equivalent transmission line model terminated on an arbitrary reactive load, which in turn models the input impedance of the metasurface-based system under consideration. The study allows to determine a priori whether the metasurface-based system can support the virtual absorption or not by evaluating the time-constant from its equivalent circuit.


2020 ◽  
Author(s):  
Angelica Viola Marini ◽  
Davide Ramaccia ◽  
Alessandro Toscano ◽  
Filiberto Bilotti

Virtual absorption concept has been recently introduced as a new phenomenon observed in electromagnetics and optics consisting of an undefined energy accumulation within a finite volume of material without dissipation. The anomalous behaviour is achieved by engaging the complex zero scattering eigenmodes of the virtual absorbing system by illuminating it with a proper complex frequency, whose value is strictly determined by the system characteristics. In this paper, we investigate on the position of the zero-pole scattering pairs in the complex frequency plane as a function of the input impedance of the metasurface-based lossless virtual absorber. We analytically derive the conditions under which a properly modulated monochromatic plane wave can be virtually absorbed by the system and stored within its volume. The analysis is developed by modelling the propagation of a normally impinging plane wave though its equivalent transmission line model terminated on an arbitrary reactive load, which in turn models the input impedance of the metasurface-based system under consideration. The study allows to determine a priori whether the metasurface-based system can support the virtual absorption or not by evaluating the time-constant from its equivalent circuit.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1770 ◽  
Author(s):  
Ali Lalbakhsh ◽  
Seyed Morteza Alizadeh ◽  
Amirhossein Ghaderi ◽  
Alireza Golestanifar ◽  
Bahare Mohamadzade ◽  
...  

A dual-band bandpass filter (BPF) composed of a coupling structure and a bent T-shaped resonator loaded by small L-shaped stubs is presented in this paper. The first band of the proposed BPF covers 4.6 to 10.6 GHz, showing 78.9% fractional bandwidth (FBW) at 7.6 GHz, and the second passband is cantered at 11.5 GHz with a FBW of 2.34%. The bent T-shaped resonator generates two transmission zeros (TZs) near the wide passband edges, which are used to tune the bandwidth of the first band, and the L-shaped stubs are used to create and control the narrow passband. The selectivity performance of the BPF is analyzed using the transfer function extracted from the lumped circuit model verified by a detailed even/odd mode analysis. The BPF presents a flat group delay (GD) of 0.45 ns and an insertion loss (IL) less than 0.6 dB in the wide passband and a 0.92 IL in the narrow passband. A prototype of the proposed BPF is fabricated and tested, showing very good agreement between the numerically predicted and measured results.


Sign in / Sign up

Export Citation Format

Share Document