scholarly journals Interpolation Hermite Polynomials For Finite Element Method

2018 ◽  
Vol 173 ◽  
pp. 03009 ◽  
Author(s):  
Alexander Gusev ◽  
Sergue Vinitsky ◽  
Ochbadrakh Chuluunbaatar ◽  
Galmandakh Chuluunbaatar ◽  
Vladimir Gerdt ◽  
...  

We describe a new algorithm for analytic calculation of high-order Hermite interpolation polynomials of the simplex and give their classification. A typical example of triangle element, to be built in high accuracy finite element schemes, is given.

2020 ◽  
Vol 226 ◽  
pp. 02007
Author(s):  
Galmandakh Chuluunbaatar ◽  
Alexander A. Gusev ◽  
Ochbadrakh Chuluunbaatar ◽  
Vladimir P. Gerdt ◽  
Sergue I. Vinitsky ◽  
...  

A new algorithm for constructing multivariate interpolation Hermite polynomials in analytical form in a multidimensional hypercube is presented. These polynomials are determined from a specially constructed set of values of the polynomials themselves and their partial derivatives with continuous derivatives up to a given order on the boundaries of the finite elements. The effciency of the finite element schemes, algor thms and programs is demonstrated by solving the Helmholtz problem for a cube.


2013 ◽  
Vol 389 ◽  
pp. 267-272 ◽  
Author(s):  
Peng Shen ◽  
Yu Min He ◽  
Zhi Shan Duan ◽  
Zhong Bin Wei ◽  
Pan Gao

In this paper, a new kind of finite element method (FEM) is proposed, which use the two-dimensional Hermite interpolation scaling function constructed by tensor product as the basis interpolation function of field function, and then combine with the energy functional with related mechanics and variational principle, the wavelet finite element equations for solving elastic thin plate unit that constructed in this paper are derived. Then the bending problem of thin plate is solved very quickly and availably through the matlab program. The numerical example in this paper indicates the correctness and validity of this method, and has high calculation precision and convergence speed. Moreover, it also provides a reliable method to solve the free vibration problem of thin plate and the pipe crack problems.


1994 ◽  
Vol 02 (04) ◽  
pp. 371-422 ◽  
Author(s):  
E. PADOVANI ◽  
E. PRIOLO ◽  
G. SERIANI

The finite element method (FEM) is a numerical technique well suited to solving problems of elastic wave propagation in complex geometries and heterogeneous media. The main advantages are that very irregular grids can be used, free surface boundary conditions can be easily taken into account, a good reconstruction is possible of irregular surface topography, and complex geometries, such as curved, dipping and rough interfaces, intrusions, cusps, and holes can be defined. The main drawbacks of the classical approach are the need for a large amount of memory, low computational efficiency, and the possible appearance of spurious effects. In this paper we describe some experience in improving the computational efficiency of a finite element code based on a global approach, and used for seismic modeling in geophysical oil exploration. Results from the use of different methods and models run on a mini-superworkstation APOLLO DN10000 are reported and compared. With Chebyshev spectral elements, great accuracy can be reached with almost no numerical artifacts. Static condensation of the spectral element's internal nodes dramatically reduces memory requirements and CPU time. Time integration performed with the classical implicit Newmark scheme is very accurate but not very efficient. Due to the high sparsity of the matrices, the use of compressed storage is shown to greatly reduce not only memory requirements but also computing time. The operation which most affects the performance is the matrix-by-vector product; an effective programming of this subroutine for the storage technique used is decisive. The conjugate gradient method preconditioned by incomplete Cholesky factorization provides, in general, a good compromise between efficiency and memory requirements. Spectral elements greatly increase its efficiency, since the number of iterations is reduced. The most efficient and accurate method is a hybrid iterative-direct solution of the linear system arising from the static condensation of high order elements. The size of 2D models that can be handled in a reasonable time on this kind of computer is nowadays hardly sufficient, and significant 3D modeling is completely unfeasible. However the introduction of new FEM algorithms coupled with the use of new computer architectures is encouraging for the future.


Sign in / Sign up

Export Citation Format

Share Document