Dynamique des populations dePhyllocnistis citrellaStainton (1856) et impact de son complexe parasitaire en Algérie

Fruits ◽  
2001 ◽  
Vol 56 (6) ◽  
pp. 403-413 ◽  
Author(s):  
Lounes Saharaoui ◽  
Abdelmadjid Benzara ◽  
Bahia Doumandji-Mitiche
2006 ◽  
Vol Volume 5, Special Issue TAM... ◽  
Author(s):  
Pierre Auger ◽  
Abderrahim El Abdllaoui ◽  
Rachid Mchich

International audience We present the method of aggregation of variables in the case of ordinary differential equations. We apply the method to a prey - predator model in a multi - patchy environment. In this model, preys can go to a refuge and therefore escape to predation. The predator must return regularly to his terrier to feed his progeny. We study the effect of density-dependent migration on the global stability of the prey-predator system. We consider constant migration rates, but also density-dependent migration rates. We prove that the positif equilibrium is globally asymptotically stable in the first case, and that its stability changes in the second case. The fact that we consider density-dependent migration rates leads to the existence of a stable limit cycle via a Hopf bifurcation. Nous présentons les grandes lignes de laméthode d'agrégation des variables dans les systèmes d'équations différentielles ordinaires. Nous appliquons laméthode à un modèle proie-prédateur spatialisé. Dans ce modèle, les proies peuvent échapper à la prédation en se réfugiant sur un site. Le prédateur doit aussi retourner régulièrement dans son terrier pour nourrir sa progéniture. Nous étudions les effets de migration dépendant de la densité des populations sur la stabilité globale du système proie-prédateur. Nous considérons des taux de migration constants, puis densité-dépendants. Dans le cas de taux constants il existe un équilibre positif toujours stable alors que dans le cas de taux de migration densité-dépendants, il existe un cycle limite stable via une bifurcation de Hopf.


2020 ◽  
Vol 72 (2) ◽  
pp. 99-118
Author(s):  
François Lebourgeois

Cet article présente une synthèse des connaissances européennes sur les groupes familiaux, la dynamique des populations et les domaines vitaux. Le cycle de reproduction des blairelles est complexe avec un processus d’implantation différée des ovocytes. Le pic majeur de reproduction a lieu en hiver (janvier-février) après la mise bas des jeunes issus des accouplements précédents. Seulement environ 30 % des femelles se reproduisent tous les ans (femelles dominantes en bonne santé). Le nombre de blaireautins dans une portée varie en moyenne de 1 à 3 mais la mortalité avant un an est forte souvent autour de 50 %. En Europe, la densité moyenne des blaireaux est de 1,8 ± 2,3 individus (adultes et jeunes) au km2 (4,7 en considérant les fortes densités anglaises). Cependant, des densités nettement plus faibles de l’ordre de 1 blaireau par 10 km2 sont souvent observées en Europe de l’Est. La taille des groupes familiaux est de 3,8 ± 1,2 individus (avec 2,6 ± 1 adultes) avec des variations assez faibles entre les pays (4,6 ± 2,1 individus avec les données anglaises). Le domaine vital varie fortement selon le sexe et la saison. Il est plus grand pour les mâles. Il est minimal en hiver pour les deux sexes mais plus grand en été pour les femelles. Il varie également très fortement selon la densité des animaux au km2. Ainsi, les domaines vitaux les plus grands (> 500 ha) sont observés dans les zones de plus faibles densités d’animaux (1 à 2 individus aux 10 km2) sous climat contraignant et dans les contextes de moindres ressources alimentaires (Europe de l’Est et contexte méditerranéen). Dans les zones plus favorables en contexte océanique tempéré, le domaine vital est nettement plus petit (< 100 ha) avec des densités d’animaux souvent supérieurs à 2 ou 3 individus au km2.


2000 ◽  
Vol 20 (02) ◽  
pp. 91-98
Author(s):  
L. El Jadd ◽  
M. El Habi ◽  
Z. Guirrou ◽  
A. Sekkat ◽  
M. Chemseddine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document