scholarly journals The topologically-disordered square lattice

1990 ◽  
Vol 51 (3) ◽  
pp. 231-242 ◽  
Author(s):  
J.M. Greneche ◽  
J.M.D. Coey
Keyword(s):  
2020 ◽  
Author(s):  
Julian Keupp ◽  
Johannes P. Dürholt ◽  
Rochus Schmid

The prototypical pillared layer MOFs, formed by a square lattice of paddle-<br>wheel units and connected by dinitrogen pillars, can undergo a breathing phase<br>transition by a “wine-rack” type motion of the square lattice. We studied this not<br>yet fully understood behavior using an accurate first principles parameterized force<br>field (MOF-FF) for larger nanocrystallites on the example of Zn 2 (bdc) 2 (dabco) [bdc:<br>benzenedicarboxylate, dabco: (1,4-diazabicyclo[2.2.2]octane)] and found clear indi-<br>cations for an interface between a closed and an open pore phase traveling through<br>the system during the phase transformation [Adv. Theory Simul. 2019, 2, 11]. In<br>conventional simulations in small supercells this mechanism is prevented by periodic<br>boundary conditions (PBC), enforcing a synchronous transformation of the entire<br>crystal. Here, we extend this investigation to pillared layer MOFs with flexible<br>side-chains, attached to the linker. Such functionalized (fu-)MOFs are experimen-<br>tally known to have different properties with the side-chains acting as fixed guest<br>molecules. First, in order to extend the parameterization for such flexible groups,<br>1a new parametrization strategy for MOF-FF had to be developed, using a multi-<br>structure force based fit method. The resulting parametrization for a library of<br>fu-MOFs is then validated with respect to a set of reference systems and shows very<br>good accuracy. In the second step, a series of fu-MOFs with increasing side-chain<br>length is studied with respect to the influence of the side-chains on the breathing<br>behavior. For small supercells in PBC a systematic trend of the closed pore volume<br>with the chain length is observed. However, for a nanocrystallite model a distinct<br>interface between a closed and an open pore phase is visible only for the short chain<br>length, whereas for longer chains the interface broadens and a nearly concerted trans-<br>formation is observed. Only by molecular dynamics simulations using accurate force<br>fields such complex phenomena can be studied on a molecular level.


Author(s):  
Yosuke KOGURE ◽  
Mikihisa ONDA ◽  
Minoru OSAWA ◽  
Yuki TAKAYAMA ◽  
Kiyohiro IKEDA
Keyword(s):  

2021 ◽  
Author(s):  
Rhine Samajdar ◽  
Mathias S. Scheurer ◽  
Shubhayu Chatterjee ◽  
Haoyu Guo ◽  
Cenke Xu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 17 (3) ◽  
pp. 160-164
Author(s):  
Ashraful Hossain Howlader ◽  
Md. Sherajul Islam ◽  
S. M. A. Razzak

2004 ◽  
Author(s):  
Ryszard Buczynski ◽  
Przemyslaw Szarniak ◽  
Dariusz Pysz ◽  
Ireneusz Kujawa ◽  
Ryszard Stepien ◽  
...  

Author(s):  
Xin Qiao ◽  
Xiaodong Lv ◽  
Yinan Dong ◽  
Yanping Yang ◽  
Fengyu Li

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 643
Author(s):  
Soo-Ho Jo ◽  
Byeng D. Youn

Several previous studies have been dedicated to incorporating double defect modes of a phononic crystal (PnC) into piezoelectric energy harvesting (PEH) systems to broaden the bandwidth. However, these prior studies are limited to examining an identical configuration of the double defects. Therefore, this paper aims to propose a new design concept for PnCs that examines differently configured double defects for broadband elastic wave energy localization and harvesting. For example, a square-pillar-type unit cell is considered and a defect is considered to be a structure where one piezoelectric patch is bonded to a host square lattice in the absence of a pillar. When the double defects introduced in a PnC are sufficiently distant from each other to implement decoupling behaviors, each defect oscillates like a single independent defect. Here, by differentiating the geometric dimensions of two piezoelectric patches, the defects’ dissimilar equivalent inertia and stiffness contribute to individually manipulating defect bands that correspond to each defect. Hence, with adequately designed piezoelectric patches that consider both the piezoelectric effects on shift patterns of defect bands and the characteristics for the output electric power obtained from a single-defect case, we can successfully localize and harvest the elastic wave energy transferred in broadband frequencies.


Sign in / Sign up

Export Citation Format

Share Document